Have a personal or library account? Click to login
Numeric Fem’s Solution for Space-Time Diffusion Partial Differential Equations with Caputo–Fabrizion and Riemann–Liouville Fractional Order’s Derivatives Cover

Numeric Fem’s Solution for Space-Time Diffusion Partial Differential Equations with Caputo–Fabrizion and Riemann–Liouville Fractional Order’s Derivatives

Open Access
|Jul 2023

References

  1. A. Atangana, On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl. Math. Comput. 273 (2016), 948–956. DOI: 10.1016/j.amc.2015.10.021
  2. M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), no. 2, 73–85. DOI: 10.12785/pfda/010201
  3. N.J. Ford, J. Xiao, and Y. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal. 14 (2011), no. 3, 454–474. DOI: 10.2478/s13540-011-0028-2
  4. H. Hejazi, T. Moroney, and F. Liu, A finite volume method for solving the two-sided time-space fractional advection-dispersion equation, Cent. Eur. J. Phys. 11 (2013), no. 10, 1275–1283. DOI: 10.2478/s11534-013-0317-y
  5. Y. Jiang and J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math. 235 (2011), no. 11, 3285–3290. DOI: 10.1016/j.cam.2011.01.011
  6. C. Li, Z. Zhao, and Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl. 62 (2011), no. 3, 855–875. DOI: 10.1016/j.camwa.2011.02.045
  7. X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), no. 3, 2108–2131. DOI: 10.1137/080718942
  8. Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), no. 2, 1533–1552. DOI: 10.1016/j.jcp.2007.02.001
  9. Z. Liu, A. Cheng, and X. Li, A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative, Int. J. Comput. Math. 95 (2018), no. 2, 396–411. DOI: 10.1080/00207160.2017.1290434
  10. M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2004), no. 1, 65–77. DOI: 10.1016/j.cam.2004.01.033
  11. M. Zheng, F. Liu, I. Turner, and V. Anh, A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM J. Sci. Comput. 37 (2015), no. 2, A701–A724. DOI: 10.1137/140980545
  12. P. Zhuang, F. Liu, I. Turner, and Y.T. Gu, Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation, Appl. Math. Model. 38 (2014), no. 15–16, 3860–3870. DOI: 10.1016/j.apm.2013.10.008
DOI: https://doi.org/10.2478/amsil-2023-0009 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 204 - 223
Submitted on: Jun 18, 2022
Accepted on: Jun 9, 2023
Published on: Jul 26, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Malika Boutiba, Selma Baghli-Bendimerad, Michal Fečkan, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.