Have a personal or library account? Click to login
Sugeno Integral for Hermite–Hadamard Inequality and Quasi-Arithmetic Means Cover

Sugeno Integral for Hermite–Hadamard Inequality and Quasi-Arithmetic Means

By: Timothy Nadhomi  
Open Access
|May 2023

References

  1. J. Aczél, The notion of mean values, Norske Vid. Selsk. Forh., Trondhjem 19 (1947), no. 23, 83–86.
  2. J. Caballero and K. Sadarangani, Hermite–Hadamard inequality for fuzzy integrals, Appl. Math. Comput. 215 (2009), no. 6, 2134–2138.
  3. P. Czinder and Zs. Páles, An extension of the Hermite–Hadamard inequality and an application for Gini and Stolarsky means, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Art. 42, 8 pp.
  4. S.S. Dragomir, Two refinements of Hadamard’s inequalities, Zb. Rad. (Kragujevac) No. 11 (1990), 23–26.
  5. S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications, Science Direct Working Paper No S1574-0358(04)70845-X, 2003.
  6. A. Ebadian and M. Oraki, Hermite–Hadamard inequality for Sugeno integral based on harmonically convex functions, J. Comput. Anal. Appl. 29 (2021), no. 3, 532–543.
  7. D.H. Hong, Equivalent conditions of Hermite–Hadamard type inequality for Sugeno integrals, Int. J. Math. Anal. (Ruse) 10 (2016), no. 27, 1323–1331.
  8. O. Hutnik, On Hadamard type inequalities for generalized weighted quasi-arithmetic means, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Art. 96, 10 pp.
  9. İ. İşcan, Hermite–Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat. 43 (2014), no. 6, 935–942.
  10. D.-Q. Li, X.-Q. Song, and T. Yue, Hermite–Hadamard type inequality for Sugeno integrals, Appl. Math. Comput. 237 (2014), 632–638.
  11. F.C. Mitroi and C.I. Spiridon, Hermite–Hadamard type inequalities of convex functions with respect to a pair of quasi-arithmetic means, Math. Rep. (Bucur.) 14(64) (2012), no. 3, 291–295.
  12. C.P. Niculescu, The Hermite–Hadamard inequality for log-convex functions, Nonlinear Anal. 75 (2012), no. 2, 662–669.
  13. C.P. Niculescu and L.-E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics, 23, Springer, New York, 2006.
  14. Z.Y. Wang and G.J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.
  15. X.-M. Zhang, Y.-M. Chu, and X.-H. Zhang, The Hermite–Hadamard type inequality of GA-convex functions and its applications, J. Inequal. Appl. 2010, Art. ID 507560, 11 pp.
DOI: https://doi.org/10.2478/amsil-2023-0007 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 294 - 305
Submitted on: Aug 4, 2022
Accepted on: Apr 26, 2023
Published on: May 30, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Timothy Nadhomi, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.