Have a personal or library account? Click to login
One-Parameter Generalization of Dual-Hyperbolic Jacobsthal Numbers Cover

One-Parameter Generalization of Dual-Hyperbolic Jacobsthal Numbers

Open Access
|Apr 2023

References

  1. M. Akar, S. Yüce, and S. fiahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, Journal of Computer Science & Computational Mathematics 8 (2018), no. 1, 1–7.
  2. D. Bród, On a new Jacobsthal-type sequence, Ars Combin. 150 (2020), 21–29.
  3. A. Cihan, A.Z. Azak, M.A. Güngör, and M. Tosun, A study on dual hyperbolic Fibonacci and Lucas numbers, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 27 (2019), no. 1, 35–48.
  4. W.K. Clifford, Preliminary sketch of biquaternions, Proc. Lond. Math. Soc. 4 (1871/73), 381–395.
  5. J. Cockle, On certain functions resembling quaternions, and on a new imaginary in algebra, Lond. Edinb. Dubl. Phil. Mag. 33 (1848), no. 224, 435–439. DOI: 10.1080/14786444808646139
  6. J. Cockle, On a new imaginary in algebra, Lond. Edinb. Dubl. Phil. Mag. 34 (1849), no. 227, 37–47. DOI: 10.1080/14786444908646169
  7. J. Cockle, On the symbols of algebra, and on the theory of tesarines, Lond. Edinb. Dubl. Phil. Mag. 34 (1849), no. 231, 406–410. DOI: 10.1080/14786444908646257
  8. J. Cockle, On impossible equations, on impossible quantities, and on tessarines, Lond. Edinb. Dubl. Phil. Mag. 37 (1850), no. 250, 281–283. DOI: 10.1080/14786445008646598
  9. A. Daşdemir, The representation, generalized Binet formula and sums of the generalized Jacobsthal p-sequence, Hittite J. Sci. Eng. 3 (2016), no. 2, 99–104.
  10. S. Falcon, On the k-Jacobsthal numbers, American Review of Mathematics and Statistics 2 (2014), no. 1, 67–77.
  11. A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly 70 (1963), no. 3, 289–291.
  12. D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea Fasc. Mat. 11 (2004), 71–110.
  13. Y. Soykan, E. Taşdemir, and İ. Okumuş, On dual hyperbolic numbers with generalized Jacobsthal numbers components, Indian J. Pure Appl. Math. (2022). DOI: 10.1007/s13226-022-00301-1
  14. A. Szynal-Liana and I. Włoch, A note on Jacobsthal quaternions, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 441–447.
  15. A. Szynal-Liana and I. Włoch, The Pell quaternions and the Pell octonions, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 435–440.
  16. A. Szynal-Liana and I. Włoch, Hypercomplex Numbers of the Fibonacci Type, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2019.
DOI: https://doi.org/10.2478/amsil-2023-0005 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 224 - 239
Submitted on: Dec 15, 2021
Accepted on: Mar 6, 2023
Published on: Apr 2, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Dorota Bród, Anetta Szynal-Liana, Iwona Włoch, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.