Have a personal or library account? Click to login
The Generalization of Gaussians and Leonardo’s Octonions Cover

References

  1. [1] F.R.V. Alves and R.P.M. Vieira, The Newton fractal’s Leonardo sequence study with the Google Colab, Int. Elect. J. Math. Ed. 15 (2020), no. 2, Article No. em0575, 9 pp.10.29333/iejme/6440
  2. [2] F.R.V. Alves, R.P.M. Vieira, and P.M.M.C. Catarino, Visualizing the Newtons fractal from the recurring linear sequence with Google Colab: An example of Brazil X Portugal research, Int. Elect. J. Math. Ed. 15 (2020), no. 3, Article No. em0594, 19 pp.
  3. [3] P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian. (N.S.) 89 (2020), no. 1, 75–86.
  4. [4] C.J. Harman, Complex Fibonacci numbers, Fibonacci Quart. 19 (1981), no. 1, 82–86.
  5. [5] A. Karataş and S. Halici, Horadam octonions, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 25 (2017), no. 3, 97–106.
  6. [6] O. Keçilioğlu and I. Akkus, The Fibonacci octonions, Adv. Appl. Clifford Algebr. 25 (2015), no. 1, 151–158.
  7. [7] A.G. Shannon, A note on generalized Leonardo numbers, Notes Number Theory Discrete Math. 25 (2019), no. 3, 97–101.
  8. [8] R.P.M. Vieira, F.R.V. Alves, and P.M.M.C. Catarino, Relações bidimensionais e identidades da sequência de Leonardo, Revista Sergipana de Matemática e Educação Matemática 4 (2019), no. 2, 156–173.
  9. [9] R.P.M. Vieira, F.R.V. Alves, and P.M.M.C. Catarino, Uma extensão dos octônios de Padovan para inteiros não positivos, C.Q.D. – Revista Eletrônica Paulista de Matemática 19 (2020), Edição Dezembro, 9–16.10.21167/cqdvol19202023169664rpmvfrvapmmcc0916
  10. [10] R.P.M. Vieira, M.C. dos S. Mangueira, F.R.V. Alves, and P.M.M.C. Catarino, A forma matricial dos números de Leonardo, Ci. e Nat. 42 (2020), 40 yrs. – Anniv. Ed., Article No. e100, 6 pp.10.5902/2179460X41839
DOI: https://doi.org/10.2478/amsil-2023-0004 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 117 - 137
Submitted on: Jan 11, 2022
Accepted on: Feb 6, 2023
Published on: Feb 27, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Renata Passos Machado Vieira, Milena Carolina dos Santos Mangueira, Francisco Régis Vieira Alves, Paula Maria Machado Cruz Catarino, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.