Have a personal or library account? Click to login
On r-Jacobsthal and r-Jacobsthal-Lucas Numbers Cover

On r-Jacobsthal and r-Jacobsthal-Lucas Numbers

By: Göksal Bilgici and  Dorota Bród  
Open Access
|Feb 2023

References

  1. [1] D. Bród, On a new Jacobsthal-type sequence, Ars Combin. 150 (2020), 21–29.
  2. [2] A. Daşdemir, The representation, generalized Binet formula and sums of the generalized Jacobsthal p-sequence, Hittite J. Sci. Eng. 3 (2016), no. 2, 99–104.
  3. [3] L.E. Dickson, History of the Theory of Numbers. Vol. I: Divisibility and Primality, Chelsea Publishing Co., New York, 1952.
  4. [4] M. Edson and O. Yayenie, A new generalization of Fibonacci sequence & extended Binet’s formula, Integers 9 (2009), no. 6, 639–654.
  5. [5] S. Falcon, On the k-Jacobsthal numbers, American Review of Mathematics and Statistics 2 (2014), no. 1, 67–77.
  6. [6] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (1965), no. 3, 161–176.
  7. [7] A.F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34 (1996), no. 1, 40–54.
  8. [8] D. Jhala, K. Sisodiya, and G.P.S. Rathore, On some identities for k-Jacobsthal numbers, Int. J. Math. Anal. (Ruse) 7 (2013), no. 12, 551–556.
  9. [9] R.E. Merrifield and H.E. Simmons, Topological Methods in Chemistry, John Wiley & Sons, New York, 1989.
  10. [10] S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences, Appl. Math. Sci. (Ruse) 9 (2015), no. 70, 3467–3476.
  11. [11] S. Uygun and E. Owusu, A new generalization of Jacobsthal numbers (bi-periodic Jacobsthal sequences), J. Math. Anal. 7 (2016), no. 5, 28–39.
DOI: https://doi.org/10.2478/amsil-2023-0001 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 16 - 31
Submitted on: Mar 7, 2022
Accepted on: Jan 5, 2023
Published on: Feb 7, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Göksal Bilgici, Dorota Bród, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.