Have a personal or library account? Click to login
Existence, Data Dependence and Stability of Fixed Points of Multivalued Maps in Incomplete Metric Spaces Cover

Existence, Data Dependence and Stability of Fixed Points of Multivalued Maps in Incomplete Metric Spaces

Open Access
|Dec 2022

References

  1. [1] M.R. Alfuraidan and M.A. Khamsi, Caristi fixed point theorem in metric spaces with a graph, Abstr. Appl. Anal. 2014, Art. ID 303484, 5 pp.10.1155/2014/303484
  2. [2] I. Altun and A. Erduran, A Suzuki type fixed-point theorem, Int. J. Math. Math. Sci. 2011, Art. ID 736063, 9 pp.10.1155/2011/736063
  3. [3] Q.H. Ansari, Metric Spaces: Including Fixed Point Theory and Set-valued Maps, Alpha Science International Ltd., Oxford, 2010.
  4. [4] G.V.R. Babu and M.V.R. Kameswari, Coupled fixed points of generalized contractive maps with rational expressions in partially ordered metric spaces, J. Adv. Res. Pure Math. 6 (2014), no. 2, 43–57.
  5. [5] R.K. Bose and R.N. Mukherjee, Stability of fixed point sets and common fixed points of families of mappings, Indian J. Pure Appl. Math. 11 (1980), no. 9, 1130–1138.
  6. [6] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.10.1090/S0002-9939-1969-0239559-9
  7. [7] R.F. Brown, M. Furi, L. Górniewicz, and B. Jiang (eds.), Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005.10.1007/1-4020-3222-6
  8. [8] S. Chandok, Some fixed point theorems for (α, β)-admissible Geraghty type contractive mappings and related results, Math. Sci. (Springer) 9 (2015), no. 3, 127–135.
  9. [9] C. Chifu and G. Petruşel, Coupled fixed point results for (φ, G)-contractions of type (b) in b-metric spaces endowed with a graph, J. Nonlinear Sci. Appl. 10 (2017), no. 2, 671–683.
  10. [10] A. Chiş-Novac, R. Precup, and I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory 10 (2009), no. 1, 73–87.
  11. [11] B.S. Choudhury, N. Metiya, and C. Bandyopadhyay, Fixed points of multivalued -admissible mappings and stability of fixed point sets in metric spaces, Rend. Circ. Mat. Palermo (2) 64 (2015), no. 1, 43–55.
  12. [12] B.S. Choudhury, N. Metiya, and S. Kundu, Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators, Chaos Solitons Fractals 133 (2020), 109678, 7 pp.10.1016/j.chaos.2020.109678
  13. [13] Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273.
  14. [14] B.K. Dass and S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math. 6 (1975), no. 12, 1455–1458.
  15. [15] M. Dinarvand, Fixed point results for (φ, ψ)-contractions in metric spaces endowed with a graph and applications, Mat. Vesnik 69 (2017), no. 1, 23–38.
  16. [16] D. Dorić, Z. Kadelburg, and S. Radenović, Edelstein-Suzuki-type fixed point results in metric and abstract metric spaces, Nonlinear Anal. 75 (2012), no. 4, 1927–1932.
  17. [17] P.N. Dutta and B.S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. 2008, Art. ID 406368, 8 pp.10.1155/2008/406368
  18. [18] R. Espínola and A. Petruşel, Existence and data dependence of fixed points for multi-valued operators on gauge spaces, J. Math. Anal. Appl. 309 (2005), no. 2, 420–432.
  19. [19] N. Hussain, M.A. Kutbi, and P. Salimi, Fixed point theory in -complete metric spaces with applications, Abstr. Appl. Anal. 2014, Art. ID 280817, 11 pp.10.1155/2014/280817
  20. [20] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1359–1373.
  21. [21] D.S. Jaggi and B.K. Dass, An extension of Banach’s fixed point theorem through a rational expression, Bull. Calcutta Math. Soc. 72 (1980), no. 5, 261–262.
  22. [22] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71–76.
  23. [23] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69 (2008), no. 9, 2942–2949.
  24. [24] W.A. Kirk and B. Sims (eds.), Handbook of Metric Fixed Point Theory, Springer, Dordrecht, 2001.10.1007/978-94-017-1748-9
  25. [25] M.A. Kutbi and W. Sintunavarat, On new fixed point results for (α, ψ, ξ)-contractive multi-valued mappings on -complete metric spaces and their consequences, Fixed Point Theory Appl. 2015, 2015:2, 15 pp.10.1186/1687-1812-2015-2
  26. [26] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), no. 1, 177–188.
  27. [27] G. Moţ and A. Petruşel, Fixed point theory for a new type of contractive multivalued operators, Nonlinear Anal. 70 (2009), no. 9, 3371–3377.
  28. [28] S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.10.2140/pjm.1969.30.475
  29. [29] O. Popescu, Two fixed point theorems for generalized contractions with constants in complete metric space, Cent. Eur. J. Math. 7 (2009), no. 3, 529–538.
  30. [30] O. Popescu, A new type of contractive multivalued operators, Bull. Sci. Math. 137 (2013), no. 1, 30–44.
  31. [31] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, Second edition, CRC Press, Boca Raton, 1999.
  32. [32] I.A. Rus, A. Petruşel, and A. Sîntămărian, Data dependence of the fixed points set of multivalued weakly Picard operators, Studia Univ. Babeş-Bolyai Math. 46 (2001), no. 2, 111–121.
  33. [33] B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for α -ψ- contractive type mappings, Nonlinear Anal. 75 (2012), no. 4, 2154–2165.
  34. [34] S.L. Singh, S.N. Mishra, and W. Sinkala, A note on fixed point stability for generalized multivalued contractions, Appl. Math. Lett. 25 (2012), no. 11, 1708–1710.
  35. [35] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1861–1869.
DOI: https://doi.org/10.2478/amsil-2022-0020 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 32 - 48
Submitted on: Oct 19, 2021
Accepted on: Nov 23, 2022
Published on: Dec 20, 2022
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Debashis Khatua, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.