Have a personal or library account? Click to login
Refinements of Some Classical Inequalities Involving Sinc and Hyperbolic Sinc Functions Cover

Refinements of Some Classical Inequalities Involving Sinc and Hyperbolic Sinc Functions

Open Access
|Nov 2022

References

  1. [1] G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen, Conformal Invariants, Inequalities and Quasiconformal Maps, John Wiley & Sons, New York, 1997.
  2. [2] Y.J. Bagul and C. Chesneau, Refined forms of Oppenheim and Cusa-Huygens type inequalities, Acta Comment. Univ. Tartu. Math. 24 (2020), no. 2, 183–194.
  3. [3] Y.J. Bagul, R.M. Dhaigude, M. Kostić, and C. Chesneau, Polynomial-exponential bounds for some trigonometric and hyperbolic functions, Axioms 10 (2021), no. 4, Paper No. 308, 10 pp.10.3390/axioms10040308
  4. [4] B. Chaouchi, V.E. Fedorov, and M. Kostić, Monotonicity of certain classes of functions related with Cusa-Huygens inequality, Chelyab. Fiz.-Mat. Zh. 6 (2021), no. 3, 31–337.
  5. [5] X.-D. Chen, H. Wang, J. Yu, Z. Cheng, and P. Zhu, New bounds of Sinc function by using a family of exponential functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 1, Paper No. 16, 17 pp.10.1007/s13398-021-01133-0
  6. [6] C. Chesneau and Y.J. Bagul, A note on some new bounds for trigonometric functions using infinite products, Malays. J. Math. Sci. 14 (2020), no. 2, 273–283.
  7. [7] A.R. Chouikha, C. Chesneau, and Y.J. Bagul, Some refinements of well-known inequalities involving trigonometric functions, J. Ramanujan Math. Soc. 36 (2021), no. 3, 193–202.
  8. [8] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Seventh edition, Elsevier/Academic Press, Amsterdam, 2007.
  9. [9] K.S.K. Iyengar, B.S. Madhava Rao, and T.S. Nanjundiah, Some trigonometrical inequalities, Half-Yearly J. Mysore Univ. Sect. B., N.S. 6 (1945), 1–12.
  10. [10] R. Klén, M. Visuri, and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, J. Inequal. Appl. 2010, Art. ID 362548, 14 pp.10.1155/2010/362548
  11. [11] Y. Lv, G. Wang, and Y. Chu, A note on Jordan type inequalities for hyperbolic functions, Appl. Math. Lett. 25 (2012), no. 3, 505–508.
  12. [12] B. Malešević, T. Lutovac, and B. Banjac, One method for proving some classes of exponential analytical inequalities, Filomat 32 (2018), no. 20, 6921–6925.
  13. [13] B. Malešević and B. Mihailović, A minimax approximant in the theory of analytic inequalities, Appl. Anal. Discrete Math. 15 (2021), no. 2, 486–509.
  14. [14] D.S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.10.1007/978-3-642-99970-3
  15. [15] E. Neuman and J. Sándor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl. 13 (2010), no. 4, 715–723.
  16. [16] E. Neuman and J. Sándor, Inequalities for hyperbolic functions, Appl. Math. Comput. 218 (2012), no. 18, 9291–9295.
  17. [17] C. Qian, X.-D. Chen, and B. Malesevic, Tighter bounds for the inequalities of Sinc function based on reparameterization, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 1, Paper No. 29, 38 pp.10.1007/s13398-021-01170-9
  18. [18] J. Sándor, Two applications of the Hadamard integral inequality, Notes Number Theory Discrete Math. 23 (2017), no. 4, 52–55.
  19. [19] S. Wu and L. Debnath, Wilker-type inequalities for hyperbolic functions, Appl. Math. Lett. 25 (2012), no. 5, 837–842.
  20. [20] Z.-H. Yang, New sharp bounds for logarithmic mean and identric mean, J. Inequal. Appl. 2013, 2013:116, 17 pp.10.1186/1029-242X-2013-116
  21. [21] Z.-H. Yang, Refinements of a two-sided inequality for trigonometric functions, J. Math. Inequal. 7 (2013), no. 4, 601–615.
  22. [22] Z.-H. Yang and Y.-M. Chu, Jordan type inequalities for hyperbolic functions and their applications, J. Funct. Spaces 2015, Art. ID 370979, 4 pp.10.1155/2015/370979
  23. [23] L. Zhang and X. Ma, Some new results of Mitrinović-Cusa’s and related inequalities based on the interpolation and approximation method, J. Math. 2021, Art. ID 5595650, 13 pp.10.1155/2021/5595650
  24. [24] L. Zhu, Generalized Lazarevic’s inequality and its applications–Part II, J. Inequal. Appl. 2009, Art. ID 379142, 4 pp.10.1155/2009/379142
  25. [25] L. Zhu, Some new bounds for Sinc function by simultaneous approximation of the base and exponential functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 81, 17 pp.10.1007/s13398-020-00811-9
  26. [26] L. Zhu and R. Zhang, New inequalities of Mitrinović-Adamović type, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 1, Paper No. 34, 15 pp.10.1007/s13398-021-01174-5
DOI: https://doi.org/10.2478/amsil-2022-0019 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 1 - 15
Submitted on: Mar 25, 2022
|
Accepted on: Nov 2, 2022
|
Published on: Nov 23, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Yogesh J. Bagul, Sumedh B. Thool, Christophe Chesneau, Ramkrishna M. Dhaigude, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.