Have a personal or library account? Click to login
Some Observations on the Greatest Prime Factor of an Integer Cover

Some Observations on the Greatest Prime Factor of an Integer

Open Access
|Nov 2022

References

  1. [1] K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math. 71 (1977), no. 2, 275–294.
  2. [2] T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York-Heidelberg, 1976.10.1007/978-1-4757-5579-4
  3. [3] O. Bordellés and L. Tóth, Additive arithmetic functions meet the inclusion-exclusion principle, II, to appear in Res. Number Theory. Avaliable at arXiv: 2112.13409.
  4. [4] R. Jakimczuk and M. Lalín, Sums of ω(n) and Ω (n) on the k-free parts and k-full parts of some particular sequences, preprint 2022.
  5. [5] R. Jakimczuk and M. Lalín, The number of prime factors on average in certain integer sequences, J. Integer Seq. 25 (2022), no. 2, Art. 22.2.3, 15 pp.
  6. [6] R. Jakimczuk, A note on sums of greatest (least) prime factors, Int. J. Contemp. Math. Sci. 8 (2013), no. 9–12, 423–432.
DOI: https://doi.org/10.2478/amsil-2022-0018 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 67 - 81
Submitted on: Mar 3, 2022
Accepted on: Nov 2, 2022
Published on: Nov 23, 2022
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Rafael Jakimczuk, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.