Have a personal or library account? Click to login
On Weights Which Admit Harmonic Bergman Kernel and Minimal Solutions of Laplace’s Equation Cover

On Weights Which Admit Harmonic Bergman Kernel and Minimal Solutions of Laplace’s Equation

Open Access
|Sep 2022

References

  1. [1] S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer-Verlag, New York, 2001.10.1007/978-1-4757-8137-3
  2. [2] S. Bell and E. Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57 (1980), no. 3, 283–289.
  3. [3] R. Figueroa and R. López Pouso, Minimal and maximal solutions to first-order differential equations with state-dependent deviated arguments, Bound. Value Probl. 2012, 2012:7, 12 pp.10.1186/1687-2770-2012-7
  4. [4] J. Gipple, The volume of n-balls, Rose-Hulman Undergrad. Math. J. 15 (2014), no. 1, 237–248.
  5. [5] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland Publishing Co., Amsterdam, 1990.
  6. [6] H. Kang and H. Koo, Estimates of the harmonic Bergman kernel on smooth domains, J. Funct. Anal. 185 (2001), no. 1, 220–239.
  7. [7] H. Koo and K. Nam, H. Yi, Weighted harmonic Bergman kernel on half-spaces, J. Math. Soc. Japan 58 (2006), no. 2, 351–362.
  8. [8] S.G. Krantz, Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, RI, 2001.10.1090/chel/340
  9. [9] Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 1–14.
  10. [10] W.C. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), no. 2, 633–660.
  11. [11] W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, 1974.
  12. [12] G.M. Troianiello, Maximal and minimal solutions to a class of elliptic quasilinear problems, Proc. Amer. Math. Soc. 91 (1984), no. 1, 95–101.
DOI: https://doi.org/10.2478/amsil-2022-0016 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 238 - 252
Submitted on: Mar 23, 2022
Accepted on: Aug 30, 2022
Published on: Sep 15, 2022
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Tomasz Łukasz Żynda, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.