Have a personal or library account? Click to login
A Note on Amalgamated Rings Along an Ideal Cover
Open Access
|Aug 2021

References

  1. [1] D.D. Anderson, Commutative rings, in: J.W. Brewer et al. (Eds.), Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer, Springer, New York, 2006, pp. 1–20.10.1007/978-0-387-36717-0_1
  2. [2] M. Chhiti and N. Mahdou, Some homological properties of amalgamated duplication of a ring along an ideal, Bull. Iranian Math. Soc. 38 2012, no. 2, 507–515.
  3. [3] M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 2015, no. 1, 41–49.
  4. [4] M. D’Anna, A construction of Gorenstein rings, J. Algebra 306 2006, no. 2, 507–519.10.1016/j.jalgebra.2005.12.023
  5. [5] M. D’Anna, C.A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana et al. (Eds.), Commutative Algebra and its Applications, Walter de Gruyter, Berlin, 2009, pp. 155–172.10.1515/9783110213188.155
  6. [6] M. D’Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 2010, no. 9, 1633–1641.10.1016/j.jpaa.2009.12.008
  7. [7] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic propeties, J. Algebra Appl. 6 2007, no. 3, 443–459.10.1142/S0219498807002326
  8. [8] J.L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 1932, no. 2, 85–88.10.1090/S0002-9904-1932-05333-2
  9. [9] M. El Maalmi and H. Mouanis, On Steinitz-like properties in amalgamated algebras along an ideal, J. Algebra Appl. 19 2020, no. 12, 2050237, 9 pp.10.1142/S0219498820502370
  10. [10] B.J. Gardner and R. Wiegandt, Radical Theory of Rings, Monographs and Textbooks in Pure and Applied Mathematics, 261, Marcel Dekker, Inc., New York, 2004.
  11. [11] S. Kabbaj, K. Louariti, and M. Tamekkante, Bi-amalgamated algebras along ideals, J. Commut. Algebra 9 2017, no. 1, 65–87.10.1216/JCA-2017-9-1-65
  12. [12] H. Kose, Y. Kurtulmaz, B. Ungor, and A. Harmanci, Semicommutativity of amalgamated rings, J. Math. Res. Appl. 38 2018, no. 4, 366–376.
  13. [13] A. Mimouni, Clean-like properties in pullbacks and amalgamation rings, Acta Math. Hungar. 156 2018, no. 1, 91–101.10.1007/s10474-018-0859-y
  14. [14] M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers a division of John Wiley & Sons, New York, 1962.
DOI: https://doi.org/10.2478/amsil-2021-0010 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 282 - 288
Submitted on: May 5, 2021
Accepted on: Jul 28, 2021
Published on: Aug 30, 2021
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Marta Nowakowska, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.