Have a personal or library account? Click to login
MHD Equations in a Bounded Domain Cover
By: Maria B. Kania  
Open Access
|Jul 2021

References

  1. [1] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.10.1007/978-0-387-70914-7
  2. [2] J.W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.10.1017/CBO9780511526404
  3. [3] J.W. Cholewa and T. Dlotko, Fractional Navier–Stokes equation, Discrete Contin. Dyn. Syst. Ser. B 23 2018, 2967–2988.
  4. [4] T. Dlotko, Navier–Stokes equation and its fractional approximations, Appl. Math. Optim. 77 2018, 99–128.10.1007/s00245-016-9368-y
  5. [5] T. Dlotko, M.B. Kania, and C. Sun, Pseudodifferential parabolic equations in uniform spaces, Appl. Anal. 93 2014, 14–34.10.1080/00036811.2012.753587
  6. [6] T. Dlotko, M.B. Kania, and C. Sun, Pseudodifferential parabolic equations; two examples, Topol. Methods Nonlinear Anal. 43 2014, 463–492.10.12775/TMNA.2014.028
  7. [7] T. Dlotko, M.B. Kania, and C. Sun, Quasi-geostrophic equation in ℝ2, J. Differential Equations 259 2015, 531–561.10.1016/j.jde.2015.02.022
  8. [8] G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Rational Mech. Anal. 46 1972, 241–279.10.1007/BF00250512
  9. [9] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, 1998.
  10. [10] H. Fujita and T. Kato, On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 1964, 269–315.10.1007/BF00276188
  11. [11] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lrspaces, Math. Z. 178 1981, 297–329.10.1007/BF01214869
  12. [12] Y. Giga, Domains of fractional powers of the Stokes operator in Lrspaces, Arch. Rational Mech. Anal. 89 1985, 251–265.10.1007/BF00276874
  13. [13] Y. Giga and T. Miyakawa, Solutions in Lr of the Navier–Stokes initial value problem, Arch. Rational Mech. Anal. 89 1985, 267–281.10.1007/BF00276875
  14. [14] C. He, X. Huang, and Y. Wang, On some new global existence results of 3D magnetohydrodynamic equations, Nonlinearity 27 2014, 343–352.10.1088/0951-7715/27/2/343
  15. [15] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.10.1007/BFb0089647
  16. [16] M.B. Kania, Fractional Burgers equation in a bounded domain, Colloq. Math. 151 2018, 57–70.10.4064/cm7063-2-2017
  17. [17] H. Koch and D. Tataru, Well-posedness for the Navier–Stokes equations, Adv. Math. 157 2001, 22–35.10.1006/aima.2000.1937
  18. [18] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 1966, 285–346.10.2140/pjm.1966.19.285
  19. [19] H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations, Tohoku Math. J. (2) 41 1989, 471–488.10.2748/tmj/1178227774
  20. [20] Y. Lin, H. Zhang, and Y Zhou, Global smooth solutions of MHD equations with large data, J. Differential Equations 261 2016, 102–112.10.1016/j.jde.2016.03.002
  21. [21] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
  22. [22] C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, Elsevier, Amsterdam, 2001.
  23. [23] C. Miao and B. Yuan, Well-posedness of the MHD system in critical Besov spaces, Methods Appl. Anal. 13 2006, 89–106.10.4310/MAA.2006.v13.n1.a5
  24. [24] C. Miao, B. Yuan, and B. Zhang, Well-posedness for the incompressible magnetohydrodynamic system, Math. Methods Appl. Sci. 30 2007, 961–976.10.1002/mma.820
  25. [25] J.C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.
  26. [26] M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 1983, 635–664.10.1002/cpa.3160360506
  27. [27] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.
  28. [28] H. Yu, Global regularity to the 3D MHD equations with large initial data in bounded domains, J. Math. Phys. 57 2016, 083102, 8 pp.10.1063/1.4961161
  29. [29] Y. Wang and K. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Anal. Real World Appl. 17 2014, 245–251.10.1016/j.nonrwa.2013.12.002
  30. [30] J. Wu, Generalized MHD equations, J. Differential Equations 195 2003, 284–312.10.1016/j.jde.2003.07.007
DOI: https://doi.org/10.2478/amsil-2021-0008 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 211 - 235
Submitted on: Mar 31, 2021
Accepted on: Jul 8, 2021
Published on: Jul 27, 2021
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Maria B. Kania, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.