Have a personal or library account? Click to login
Some Fixed Point Theorems Via Combination of Weak Contraction and Caristi Contractive Mapping Cover

Some Fixed Point Theorems Via Combination of Weak Contraction and Caristi Contractive Mapping

Open Access
|Apr 2021

References

  1. [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 1922, 133–181.10.4064/fm-3-1-133-181
  2. [2] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9 2004, no. 1, 43–53.
  3. [3] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 1976, 241–251.10.1090/S0002-9947-1976-0394329-4
  4. [4] L.B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N.S.) 12(26) 1971, 19–26.
  5. [5] L.B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 1974, 267–273.10.1090/S0002-9939-1974-0356011-2
  6. [6] G.S. Jeong and B.E. Rhoades, Maps for which F(T) = F(Tn), in: Y.J. Cho et al. (eds.), Fixed Point Theory and Applications, 6, Nova Sci. Publ., New York, 2007, pp. 71–104.
  7. [7] E. Karapınar, F. Khojasteh, and Z.D. Mitrovic, A proposal for revisiting Banach and Caristi type theorems in b-metric spaces, Mathematics 7 2019, no. 4, 308, 4 pp. DOI:10.3390/math7040308.10.3390/math7040308
  8. [8] E. Karapınar, F. Khojasteh, and W. Shatanawi, Revisiting Ćirić -type contraction with Caristi’s approach, Symmetry 11 2019, no. 6, 726, 7 pp. DOI:10.3390/sym11060726.10.3390/sym11060726
  9. [9] K. Roy and M. Saha, Fixed point theorems for generalized contractive and expansive type mappings over a C*-algebra valued metric space, Sci. Stud. Res. Ser. Math. Inform. 28 2018, no. 1, 115–129.
  10. [10] K. Roy and M. Saha, Fixed point theorems for a pair of generalized contractive mappings over a metric space with an application to homotopy, Acta Univ. Apulensis Math. Inform. 60 2019, 1–17.
DOI: https://doi.org/10.2478/amsil-2021-0003 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 289 - 301
Submitted on: Jun 14, 2020
Accepted on: Mar 11, 2021
Published on: Apr 13, 2021
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Kushal Roy, Sayantan Panja, Mantu Saha, Zoran D. Mitrović, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.