Have a personal or library account? Click to login

Generalized Fractional Inequalities of the Hermite–Hadamard Type for Convex Stochastic Processes

Open Access
|Dec 2020

References

  1. [1] J.E. Hernández and J.F. Gómez, Hermite–Hadamard type inequalities, convex stochastic processes and Katugampola fractional integral, Rev. Integr. Temas Mat. 36 (2018), no. 2, 133–149.10.18273/revint.v36n2-2018005
  2. [2] U.N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv preprint 2016. Avaliable at arXiv:1612.08596.
  3. [3] D. Kotrys, Hermite–Hadamard inequality for convex stochastic processes, Aequationes Math. 83 (2012), no. 1–2, 143–151.10.1007/s00010-011-0090-1
  4. [4] N. Mehreen and M. Anwar, Hermite–Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl. 2019, paper 92, 17 pp.10.1186/s13660-019-2047-1
  5. [5] K. Nikodem, On convex stochastic processes, Aequationes Math. 20 (1980), no. 2–3, 184–197.10.1007/BF02190513
  6. [6] N. Okur, I. Iscan, and E. Yuksek Dizdar, Hermite–Hadamard type inequalities for p-convex stochastic processes, Int. J. Optim. Control. Theor. Appl. IJOCTA 9 (2019), no. 2, 148–153.10.11121/ijocta.01.2019.00602
  7. [7] S. Özcan, Hermite–Hadamard type inequalities for exponentially p-convex stochastic processes, Sakarya Univ. J. Sci. 23 (2019), no. 5, 1012–1018.10.16984/saufenbilder.561040
  8. [8] M.Z. Sarıkaya, E. Set, H. Yaldiz, and N. Başak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), no. 9–10, 2403–2407.10.1016/j.mcm.2011.12.048
  9. [9] M.Z. Sarıkaya, H. Yaldiz, and H. Budak, Some integral inequalities for convex stochastic processes, Acta Math. Univ. Comenian. (N.S.) 85 (2016), no. 1, 155–164.
  10. [10] E. Set, M. Tomar, and S. Maden, Hermite–Hadamard type inequalities for s-convex stochastic processes in the second sense, Turkish J. Anal. Number Theory 2 (2014), no. 6, 202–207.10.12691/tjant-2-6-3
  11. [11] E. Set, M.Z. Sarıkaya, and M. Tomar, Hermite–Hadamard type inequalities for coordinates convex stochastic processes, Math. Æterna. 5 (2015), no. 2, 363–382.
  12. [12] M. Tomar, E. Set, and S. Maden, Hermite–Hadamard type inequalities for log-convex stochastic processes, J. New Theory 2 (2015), 23–32.
  13. [13] M. Tomar, E. Set, and N.O. Bekar, Hermite–Hadamard type inequalities for strongly log-convex stochastic processes, J. Global Engineering Studies 1 (2014), no. 2, 53–61.
DOI: https://doi.org/10.2478/amsil-2020-0026 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 90 - 104
Submitted on: Feb 9, 2020
Accepted on: Nov 24, 2020
Published on: Dec 17, 2020
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 McSylvester Ejighikeme Omaba, Eze R. Nwaeze, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.