Have a personal or library account? Click to login
Generalized Fractional Inequalities of the Hermite–Hadamard Type for Convex Stochastic Processes Cover

Generalized Fractional Inequalities of the Hermite–Hadamard Type for Convex Stochastic Processes

Open Access
|Dec 2020

References

  1. [1] J.E. Hernández and J.F. Gómez, Hermite–Hadamard type inequalities, convex stochastic processes and Katugampola fractional integral, Rev. Integr. Temas Mat. 36 (2018), no. 2, 133–149.10.18273/revint.v36n2-2018005
  2. [2] U.N. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv preprint 2016. Avaliable at arXiv:1612.08596.
  3. [3] D. Kotrys, Hermite–Hadamard inequality for convex stochastic processes, Aequationes Math. 83 (2012), no. 1–2, 143–151.10.1007/s00010-011-0090-1
  4. [4] N. Mehreen and M. Anwar, Hermite–Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl. 2019, paper 92, 17 pp.10.1186/s13660-019-2047-1
  5. [5] K. Nikodem, On convex stochastic processes, Aequationes Math. 20 (1980), no. 2–3, 184–197.10.1007/BF02190513
  6. [6] N. Okur, I. Iscan, and E. Yuksek Dizdar, Hermite–Hadamard type inequalities for p-convex stochastic processes, Int. J. Optim. Control. Theor. Appl. IJOCTA 9 (2019), no. 2, 148–153.10.11121/ijocta.01.2019.00602
  7. [7] S. Özcan, Hermite–Hadamard type inequalities for exponentially p-convex stochastic processes, Sakarya Univ. J. Sci. 23 (2019), no. 5, 1012–1018.10.16984/saufenbilder.561040
  8. [8] M.Z. Sarıkaya, E. Set, H. Yaldiz, and N. Başak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), no. 9–10, 2403–2407.10.1016/j.mcm.2011.12.048
  9. [9] M.Z. Sarıkaya, H. Yaldiz, and H. Budak, Some integral inequalities for convex stochastic processes, Acta Math. Univ. Comenian. (N.S.) 85 (2016), no. 1, 155–164.
  10. [10] E. Set, M. Tomar, and S. Maden, Hermite–Hadamard type inequalities for s-convex stochastic processes in the second sense, Turkish J. Anal. Number Theory 2 (2014), no. 6, 202–207.10.12691/tjant-2-6-3
  11. [11] E. Set, M.Z. Sarıkaya, and M. Tomar, Hermite–Hadamard type inequalities for coordinates convex stochastic processes, Math. Æterna. 5 (2015), no. 2, 363–382.
  12. [12] M. Tomar, E. Set, and S. Maden, Hermite–Hadamard type inequalities for log-convex stochastic processes, J. New Theory 2 (2015), 23–32.
  13. [13] M. Tomar, E. Set, and N.O. Bekar, Hermite–Hadamard type inequalities for strongly log-convex stochastic processes, J. Global Engineering Studies 1 (2014), no. 2, 53–61.
DOI: https://doi.org/10.2478/amsil-2020-0026 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 90 - 104
Submitted on: Feb 9, 2020
Accepted on: Nov 24, 2020
Published on: Dec 17, 2020
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 McSylvester Ejighikeme Omaba, Eze R. Nwaeze, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.