[4] N. Mehreen and M. Anwar, Hermite–Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl. 2019, paper 92, 17 pp.10.1186/s13660-019-2047-1
[6] N. Okur, I. Iscan, and E. Yuksek Dizdar, Hermite–Hadamard type inequalities for p-convex stochastic processes, Int. J. Optim. Control. Theor. Appl. IJOCTA 9 (2019), no. 2, 148–153.10.11121/ijocta.01.2019.00602
[7] S. Özcan, Hermite–Hadamard type inequalities for exponentially p-convex stochastic processes, Sakarya Univ. J. Sci. 23 (2019), no. 5, 1012–1018.10.16984/saufenbilder.561040
[8] M.Z. Sarıkaya, E. Set, H. Yaldiz, and N. Başak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), no. 9–10, 2403–2407.10.1016/j.mcm.2011.12.048
[9] M.Z. Sarıkaya, H. Yaldiz, and H. Budak, Some integral inequalities for convex stochastic processes, Acta Math. Univ. Comenian. (N.S.) 85 (2016), no. 1, 155–164.
[10] E. Set, M. Tomar, and S. Maden, Hermite–Hadamard type inequalities for s-convex stochastic processes in the second sense, Turkish J. Anal. Number Theory 2 (2014), no. 6, 202–207.10.12691/tjant-2-6-3
[11] E. Set, M.Z. Sarıkaya, and M. Tomar, Hermite–Hadamard type inequalities for coordinates convex stochastic processes, Math. Æterna. 5 (2015), no. 2, 363–382.
[13] M. Tomar, E. Set, and N.O. Bekar, Hermite–Hadamard type inequalities for strongly log-convex stochastic processes, J. Global Engineering Studies 1 (2014), no. 2, 53–61.