References
- [1] M. Bicknell, A primer on the Pell sequence and related sequences, Fibonacci Quart. 13 (1975), no. 4, 345–349.
- [2] D. Bród, On a new one parameter generalization of Pell numbers, Ann. Math. Sil. 33 (2019), 66–76.
- [3] J.M. Mahon and A.F. Horadam, Ordinary generating functions for Pell polynomials, Fibonacci Quart. 25 (1987), no. 1, 45–56.
- [4] The online encyclopedia of integer sequences. http://oeis.org.
- [5] T. Komatsu, Higher-order identities for balancing numbers, Notes Number Theory Discrete Math. 26 (2020), no. 2, 71–84.
- [6] T. Mansour and M. Shattuck, Restricted partitions and q-Pell numbers, Cent. Eur. J. Math. 9 (2011), no. 2, 346–355.
- [7] H. Prodinger, On a sum of Melham and its variants, Fibonacci Quart. 46/47 (2008/2009), no. 3, 207–215.
- [8] H. Prodinger, Sums of powers over equally spaced Fibonacci numbers, Integers 20 (2020), paper A37, 6 pp.
- [9] H. Prodinger, How to sum powers of balancing numbers efficiently, arXiv preprint 2020. Avaliable at arXiv:2008.03916.
- [10] L. Trojnar-Spelina and I. Włoch, On generalized Pell and Pell–Lucas numbers, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), no. 6, 2871–2877.