Have a personal or library account? Click to login
Thermodynamic Formalism Methods In the Theory of Iteration of Mappings in Dimension One, Real and Complex Cover

Thermodynamic Formalism Methods In the Theory of Iteration of Mappings in Dimension One, Real and Complex

Open Access
|Dec 2020

References

  1. [1] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Math., 470, Springer-Verlag, Berlin-New York, 1975.10.1007/BFb0081279
  2. [2] H. Bruin, J. Rivera-Letelier, W. Shen, and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), no.3, 509–533.10.1007/s00222-007-0108-4
  3. [3] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993.10.1007/978-3-642-78043-1
  4. [4] M. Denker, F. Przytycki, and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), no. 2, 255–266.10.1017/S0143385700008804
  5. [5] N. Dobbs and M. Todd, Free energy and equilibrium states for families of interval maps, to appear in Mem. Amer. Math. Soc. Avaliable at arXiv:1512.09245.
  6. [6] K. Gelfert, F. Przytycki, and M. Rams, On the Lyapunov spectrum for rational maps, Math. Ann. 348 (2010), no. 4, 965–1004.10.1007/s00208-010-0508-4
  7. [7] K. Gelfert, F. Przytycki, and M. Rams, Lyapunov spectrum for multimodal maps, Ergodic Theory Dynam. Systems 36 (2016), no. 5, 1441–1493.10.1017/etds.2014.135
  8. [8] H. Hedenmalm and I. Kayumov, On the Makarov law of the iterated logarithm, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2235–2248.10.1090/S0002-9939-07-08772-2
  9. [9] I. Inoquio-Renteria and J. Rivera-Letelier, A characterization of hyperbolic potentials of rational maps, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 1, 99–127.10.1007/s00574-012-0007-1
  10. [10] A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488.10.1090/S0002-9947-1973-0335758-1
  11. [11] G. Levin, F. Przytycki, and W. Shen, The Lyapunov exponent of holomorphic maps, Invent. Math. 205 (2016), no. 2, 363–382.10.1007/s00222-015-0637-1
  12. [12] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), no. 1, 161–179.10.1007/BF01388554
  13. [13] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), no. 1, 309–317.10.1090/S0002-9939-1993-1186141-9
  14. [14] F. Przytycki, Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fund. Math. 144 (1994), no. 3, 259–278.10.4064/fm-144-3-259-278
  15. [15] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), no. 5, 2081–2099.10.1090/S0002-9947-99-02195-9
  16. [16] F. Przytycki, Geometric pressure in real and complex 1-dimensional dynamics via trees of pre-images and via spanning sets, Monatsh. Math. 185 (2018), no. 1, 133–158.10.1007/s00605-017-1137-8
  17. [17] F. Przytycki, Thermodynamic formalism methods in one-dimensional real and complex dynamics, in: B. Sirakov et al. (Eds.), Proceedings of the International Congress of Mathematicians 2018, Rio de Janeiro, Vol. III, World Scientific, Singapore, 2018, pp. 2105–2132.10.1142/9789813272880_0131
  18. [18] F. Przytycki, Metody formalizmu termodynamicznego w jednowymiarowej dynamice rzeczywistej i zespolonej, Wiad. Mat. 54 (2018), no. 1, 23–53.
  19. [19] F. Przytycki and J. Rivera-Letelier, Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys. 301 (2011), no. 3, 661–707.10.1007/s00220-010-1158-9
  20. [20] F. Przytycki and J. Rivera-Letelier, Geometric pressure for multimodal maps of the interval, Mem. Amer. Math. Soc. 259 (2019), no. 1246, 81 pp.10.1090/memo/1246
  21. [21] F. Przytycki, J. Rivera-Letelier, and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. 151 (2003), no. 1, 29–63.10.1007/s00222-002-0243-x
  22. [22] F. Przytycki, J. Rivera-Letelier, and S. Smirnov, Equality of pressures for rational functions, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 891–914.10.1017/S0143385703000385
  23. [23] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math. 155 (1998), no. 2, 189–199.
  24. [24] F. Przytycki and J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), no. 3, 425–440.10.1007/BF01459252
  25. [25] F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series, 371, Cambridge University Press, Cambridge, 2010.10.1017/CBO9781139193184
  26. [26] F. Przytycki, M. Urbański, and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I, Ann. of Math. (2) 130 (1989), no. 1, 1–40.10.2307/1971475
  27. [27] F. Przytycki, M. Urbański, and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, II, Studia Math. 97 (1991), no. 3, 189–225.10.4064/sm-97-3-189-225
  28. [28] D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publ. Co., London, 1978.
  29. [29] Ya.G. Sinai, Gibbs measures in ergodic theory, (Russian) Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64. Russ. Math. Surv. 27 (1972), no. 4, 21–69 (English).10.1070/RM1972v027n04ABEH001383
  30. [30] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.10.1007/978-1-4612-5775-2
  31. [31] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), no. 3, 627–649.10.1007/BF01234434
DOI: https://doi.org/10.2478/amsil-2020-0023 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 1 - 20
Submitted on: Sep 10, 2020
Accepted on: Nov 8, 2020
Published on: Dec 14, 2020
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Feliks Przytycki, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.