[1] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Math., 470, Springer-Verlag, Berlin-New York, 1975.10.1007/BFb0081279
[2] H. Bruin, J. Rivera-Letelier, W. Shen, and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), no.3, 509–533.10.1007/s00222-007-0108-4
[4] M. Denker, F. Przytycki, and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), no. 2, 255–266.10.1017/S0143385700008804
[5] N. Dobbs and M. Todd, Free energy and equilibrium states for families of interval maps, to appear in Mem. Amer. Math. Soc. Avaliable at arXiv:1512.09245.
[6] K. Gelfert, F. Przytycki, and M. Rams, On the Lyapunov spectrum for rational maps, Math. Ann. 348 (2010), no. 4, 965–1004.10.1007/s00208-010-0508-4
[7] K. Gelfert, F. Przytycki, and M. Rams, Lyapunov spectrum for multimodal maps, Ergodic Theory Dynam. Systems 36 (2016), no. 5, 1441–1493.10.1017/etds.2014.135
[8] H. Hedenmalm and I. Kayumov, On the Makarov law of the iterated logarithm, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2235–2248.10.1090/S0002-9939-07-08772-2
[9] I. Inoquio-Renteria and J. Rivera-Letelier, A characterization of hyperbolic potentials of rational maps, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 1, 99–127.10.1007/s00574-012-0007-1
[10] A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488.10.1090/S0002-9947-1973-0335758-1
[11] G. Levin, F. Przytycki, and W. Shen, The Lyapunov exponent of holomorphic maps, Invent. Math. 205 (2016), no. 2, 363–382.10.1007/s00222-015-0637-1
[12] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), no. 1, 161–179.10.1007/BF01388554
[14] F. Przytycki, Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fund. Math. 144 (1994), no. 3, 259–278.10.4064/fm-144-3-259-278
[15] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), no. 5, 2081–2099.10.1090/S0002-9947-99-02195-9
[16] F. Przytycki, Geometric pressure in real and complex 1-dimensional dynamics via trees of pre-images and via spanning sets, Monatsh. Math. 185 (2018), no. 1, 133–158.10.1007/s00605-017-1137-8
[17] F. Przytycki, Thermodynamic formalism methods in one-dimensional real and complex dynamics, in: B. Sirakov et al. (Eds.), Proceedings of the International Congress of Mathematicians 2018, Rio de Janeiro, Vol. III, World Scientific, Singapore, 2018, pp. 2105–2132.10.1142/9789813272880_0131
[19] F. Przytycki and J. Rivera-Letelier, Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys. 301 (2011), no. 3, 661–707.10.1007/s00220-010-1158-9
[20] F. Przytycki and J. Rivera-Letelier, Geometric pressure for multimodal maps of the interval, Mem. Amer. Math. Soc. 259 (2019), no. 1246, 81 pp.10.1090/memo/1246
[21] F. Przytycki, J. Rivera-Letelier, and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. 151 (2003), no. 1, 29–63.10.1007/s00222-002-0243-x
[22] F. Przytycki, J. Rivera-Letelier, and S. Smirnov, Equality of pressures for rational functions, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 891–914.10.1017/S0143385703000385
[24] F. Przytycki and J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), no. 3, 425–440.10.1007/BF01459252
[25] F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series, 371, Cambridge University Press, Cambridge, 2010.10.1017/CBO9781139193184
[26] F. Przytycki, M. Urbański, and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I, Ann. of Math. (2) 130 (1989), no. 1, 1–40.10.2307/1971475
[27] F. Przytycki, M. Urbański, and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, II, Studia Math. 97 (1991), no. 3, 189–225.10.4064/sm-97-3-189-225
[30] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.10.1007/978-1-4612-5775-2
[31] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), no. 3, 627–649.10.1007/BF01234434