Have a personal or library account? Click to login
On the Borel Classes of Set-Valued Maps of Two Variables Cover

On the Borel Classes of Set-Valued Maps of Two Variables

Open Access
|Jul 2020

References

  1. [1] R. Brisac, Les classes de Baire des fonctions multiformes, C. R. Acad. Sci. Paris 224 (1947), 257–258.
  2. [2] J. Ewert, Multivalued Mappings and Bitopological Spaces (Polish), Pomeranian University in Słupsk, Słupsk, 1985.
  3. [3] J. Ewert and T. Lipski, Lower and upper quasicontinuous functions, Demonstratio Math. 16 (1983), no. 1, 85–93.
  4. [4] K.M. Garg, On the classification of set-valued functions, Real Anal. Exchange 9 (1983/84), no. 1, 86–93.10.2307/44153516
  5. [5] R.W. Hansell, Hereditarily additive families in descriptive set theory and Borel measurable multimaps, Trans. Amer. Math. Soc. 278 (1983), no. 2, 725–749.
  6. [6] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, vol. I, Kluwer Academic Publishers, Dordrecht-Boston-London, 1997.
  7. [7] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.10.4064/fm-19-1-184-197
  8. [8] K. Kuratowski, Sur la théorie des fonctions dans les espaces métriques, Fund. Math. 17 (1931), 275–282.10.4064/fm-17-1-275-282
  9. [9] K. Kuratowski, On set-valued B-measurable mappings and a theorem of Hausdorff, in: G. Asser, J. Flachsmeyer, and W. Rinow (eds.), Theory of Sets and Topology (in Honour of Felix Hausdorff, 1868-1942), VEB Deutsh. Verlag Wissench., Berlin, 1972, pp. 355–362.
  10. [10] K. Kuratowski, Some remarks on the relation of classical set-valued mappings to the Baire classification, Colloq. Math. 42 (1979), 273–277.10.4064/cm-42-1-273-277
  11. [11] G. Kwiecińska, On the Borel class of multivalued functions of two variables, Topology Proc. 25 (2000), 601–613.
  12. [12] G. Kwiecińska, B-measurability of multifunctions of two variables, Real Analysis Exchange, Summer Symposium 2011, 36–41.
  13. [13] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988), no. 2, 259–306.
  14. [14] W. Zygmunt, The Scorza–Dragoni Property (Polish), Thesis, M. Curie-Skłodowska University, Lublin, 1990.
DOI: https://doi.org/10.2478/amsil-2020-0018 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 81 - 95
Submitted on: Jan 14, 2020
Accepted on: Jun 28, 2020
Published on: Jul 16, 2020
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Ľubica Holá, Grażyna Kwiecińska, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.