Have a personal or library account? Click to login
Ohlin and Levin–Stečkin-Type Results for Strongly Convex Functions Cover

Ohlin and Levin–Stečkin-Type Results for Strongly Convex Functions

Open Access
|Jul 2020

References

  1. [1] M. Denuit, C. Lefevre, and M. Shaked, The s-convex orders among real random variables, with applications, Math. Inequal. Appl. 1 (1998), 585–613.
  2. [2] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer– Verlag, Berlin–Heidelberg, 2001.10.1007/978-3-642-56468-0
  3. [3] M. Klaričić Bakula and K. Nikodem, On the converse Jensen inequality for strongly convex functions, J. Math. Anal. Appl. 434 (2016), 516–522.10.1016/j.jmaa.2015.09.032
  4. [4] V.I. Levin and S.B. Stečkin, Inequalities, Amer. Math. Soc. Transl. (2) 14 (1960), 1–29.
  5. [5] N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193–199.10.1007/s00010-010-0043-0
  6. [6] C.P. Niculescu and L.-E. Persson, Convex Functions and theirApplications. A Contemporary Approach, CMS Books in Mathematics, Vol. 23, Springer, New York, 2006.10.1007/0-387-31077-0
  7. [7] M. Niezgoda, An extension of Levin–Stečkin’s theorem to uniformly convex and superquadratic functions, Aequationes Math. 94 (2020), 303–321.10.1007/s00010-019-00675-4
  8. [8] K. Nikodem, On strongly convex functions and related classes of functions, in: Th.M. Rassias (ed.), Handbook of Functional Equations. Functional Inequalities, Springer Optimization and Its Applications, Vol. 95, Springer, New York, 2014, Chpt.16, pp. 365–405.10.1007/978-1-4939-1246-9_16
  9. [9] J. Ohlin, On a class of measures of dispersion with application to optimal reinsurance, ASTIN Bulletin 5 (1969), 249–266.10.1017/S0515036100008102
  10. [10] A. Olbryś and T. Szostok, Inequalities of the Hermite–Hadamard type involving numerical differentiation formulas, Results Math. 67 (2015), 403–416.10.1007/s00025-015-0451-5
  11. [11] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72–75.
  12. [12] T. Rajba, On the Ohlin lemma for Hermite–Hadamard–Fejér type inequalities, Math. Inequal. Appl. 17 (2014), 557–571.
  13. [13] T. Rajba, On some recent applications of stochastic convex ordering theorems to some functional inequalities for convex functions: a survey, in: J. Brzdęk, K. Ciepliński, Th.M. Rassias (eds.), Developments in Functional Equations and Related Topics, Springer Optimization and Its Applications, Vol. 124, Springer, Cham, 2017, Chpt. 11, pp. 231–274.10.1007/978-3-319-61732-9_11
  14. [14] T. Rajba and Sz. Wąsowicz, Probabilistic characterization of strong convexity, Opus-cula Math. 31 (2011), 97–103.10.7494/OpMath.2011.31.1.97
  15. [15] A.W. Roberts and D.E. Varberg, Convex Functions, Academic Press, New York– London, 1973.
  16. [16] T. Szostok, Ohlin’s lemma and some inequalities of the Hermite–Hadamard type, Aequationes Math. 89 (2015), 915–926.10.1007/s00010-014-0286-2
  17. [17] T. Szostok, Inequalities for convex functions via Stieltjes integral, Lith. Math. J. 58 (2018), 95–103.10.1007/s10986-018-9386-3
  18. [18] T. Szostok, Levin Stečkin theorem and inequalities of the Hermite–Hadamard type, arXiv preprint. Available at arXiv:1411.7708v1.
DOI: https://doi.org/10.2478/amsil-2020-0017 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 123 - 132
Submitted on: Jul 6, 2019
|
Accepted on: Jun 28, 2020
|
Published on: Jul 16, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Kazimierz Nikodem, Teresa Rajba, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.