References
- [MR1] MR791750 (87e:28008)
- [MR2] MR986915 (90c:28001)
- [MR3] MR1037927 (91c:39010)
- [RA] Modern Real Analysis, editors: J. Hejduk, S. Kowalczyk, R. J. Pawlak, and M. Turowska, Dedicated to Professors Roman Ger, Jacek Jędrzejewski, Zygfryd Kominek, Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 2015.
- [AA] A. Abian, The outer and inner measure of a non-measurable set, Boll. Un. Mat. Ital. (4) 3 (1970), 555–558.
- [BSV] K. Baron, M. Sablik, and P. Volkmann, On decent solutions of a functional congruence, Rocznik Nauk.-Dydakt. Akad. Pedagog. w Krakowie, Prace Mat. 17 (2000), 27–40.
- [GK] R. Ger, M. Kuczma, On the boundedness and continuity of convex functions and additive functions, Aequationes Math. 4 (1970), 157–162.10.1007/BF01817756
- [DH] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.10.1073/pnas.27.4.222107831016578012
- [HU] D.H. Hyers, S. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292.10.1090/S0002-9904-1945-08337-2
- [RK] R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269–272.10.4064/sm-27-3-269-272
- [MEK] M.E. Kuczma, On discontinuous additive functions, Fund. Math. 66 (1970), 383–392.10.4064/fm-66-3-383-392
- [KK] M.E. Kuczma and M. Kuczma, An elementary proof and an extension of a theorem of Steinhaus, Glasnik Mat. Ser. III 6(26) (1971), 11–18.
- [MK] M. Kuczma, On some set classes occurring in the theory of convex functions, Comment. Math. 17 (1973), 127–135.
- [KS] M. Kuczma and J. Smítal, On measures connected with the Cauchy equation, Aequationes Math. 14 (1976), 421–428.10.1007/BF01835991
- [NK] N. Kuhn, A note on t-convex functions, in: W. Walter (ed.), General Inequalities, 4, Oberwolfach, 1983, Internat. Ser. Numer. Math., vol. 71, Birkhäuser Verlag, Basel-Boston, 1984, pp. 269–276.
- [GM] Gy. Maksa, On the alienation of the logarithmic and exponential Cauchy equations, Aequationes Math. 92 (2018), 543–547.10.1007/s00010-017-0535-2
- [HM] H.I. Miller, An incompatibility result, Rev. Roumaine Math. Pures Appl. 26 (1981), 1217–1220.
- [NG] C.T. Ng, Functions generating Schur-convex sums, in: W. Walter (ed.), General Inequalities, 5, Oberwolfach, 1986, Internat. Ser. Numer. Math., vol. 80, Birkhäuser Verlag, Basel-Boston, 1987, pp. 433–438.10.1007/978-3-0348-7192-1_35
- [AO] A. Olbryś, A support theorem for generalized convexity and its applications, J. Math. Anal. Appl. 458 (2018), 1044–1058.10.1016/j.jmaa.2017.09.038
- [OC] W. Orlicz and Z. Ciesielski, Some remarks on the convergence of functionals on bases, Studia Math. 16 (1958), 335–352.10.4064/sm-16-3-335-352
- [SP] S. Piccard, Sur les ensembles parfaits, Mém. Univ. Neuchâtel, vol. 16, Secrétariat de l’Université, Neuchâtel, 1942, 172 pp.
- [RI] Report of Meeting, Aequationes Math. 91 (2017), 1157–1204.10.1007/s00010-017-0530-7
- [GR] G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474–481.10.1007/BF01226477
- [WS1] W. Sander, Verallgemeinerungen eines Satzes von S. Piccard, Manuscripta Math. 16 (1975), 11–25.10.1007/BF01169060
- [WS2] W. Sander, Verallgemeinerungen eines Satzes von H. Steinhaus, Manuscripta Math. 18 (1976), 25–42.10.1007/BF01170533
- [FS] F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.10.1007/BF02924890
- [JT] J. Tabor, Hosszú functional equation on the unit interval is not stable, Publ. Math. Debrecen 49 (1996), 335–340.
- [WW] W. Wilczyński, Theorems of H. Steinhaus, S. Piccard and J. Smítal, Lecture during the Ger-Kominek Workshop in Mathematical Analysis and Real Functions. Katowice, Silesian University, November 20–21, 2015.