Have a personal or library account? Click to login
Hypo-q-Norms on a Cartesian Product of Algebras of Operators on Banach Spaces Cover

Hypo-q-Norms on a Cartesian Product of Algebras of Operators on Banach Spaces

Open Access
|Feb 2020

References

  1. [1] S.S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Art. 63, 142 pp. Available at https://www.emis.de/journals/JIPAM/article301.html?sid=301.
  2. [2] S.S. Dragomir, A counterpart of Schwarz’s inequality in inner product spaces, East Asian Math. J. 20 (2004), no. 1, 1–10. Preprint RGMIA Res. Rep. Coll. 6 (2003), Supplement, Art. 18. Available at http://rgmia.org/papers/v6e/CSIIPS.pdf.
  3. [3] S.S. Dragomir, Semi-Inner Products and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2004.
  4. [4] S.S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers, Inc., Hauppauge, NY, 2005.
  5. [5] S.S. Dragomir, Reverses of the Schwarz inequality generalising a Klamkin-McLenaghan result, Bull. Austral. Math. Soc. 73 (2006), no. 1, 69–78.
  6. [6] S.S. Dragomir, The hypo-Euclidean norm of an n-tuple of vectors in inner product spaces and applications, J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Art. 52, 22 pp. Available at https://www.emis.de/journals/JIPAM/article854.html?sid=854.
  7. [7] S.S. Dragomir, Hypo-q-norms on a Cartesian product of normed linear spaces, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 153. Available at http://rgmia.org/papers/v20/v20a153.pdf.10.20944/preprints201711.0097.v1
  8. [8] S.S. Dragomir, Inequalities for hypo-q-norms on a Cartesian product of inner product spaces, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 168. Available at http://rgmia.org/papers/v20/v20a168.pdf.10.20944/preprints201711.0097.v1
  9. [9] J.R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436–446.10.1090/S0002-9947-1967-0217574-1
  10. [10] B.W. Glickfeld, On an inequality of Banach algebra geometry and semi-inner product space theory, Illinois J. Math. 14 (1970), 76–81.10.1215/ijm/1256053302
  11. [11] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43.10.1090/S0002-9947-1961-0133024-2
  12. [12] P.M. Miličić, Sur le semi-produit scalaire dans quelques espaces vectoriels normés, Mat. Vesnik 8(23) (1971), 181–185.
  13. [13] P.M. Miličić, Une généralisation naturelle du produit scalaire dans un espace normé et son utilisation, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987), 63–70.
  14. [14] P.M. Miličić, La fonctionelle g et quelques problèmes des meilleures approximations dans des espaces normés, Publ. Inst. Math. (Beograd) (N.S.) 48(62) (1990), 110–118.
  15. [15] M.S. Moslehian, M. Sattari and K. Shebrawi, Extensions of Euclidean operator radius inequalities, Math. Scand. 120 (2017), no. 1, 129–144.
  16. [16] B. Nath, On a generalization of semi-inner product spaces, Math. J. Okayama Univ. 15 (1971), no. 1, 1–6.
  17. [17] P.L. Papini, Un’osservazione sui prodotti semi-scalari negli spazi di Banach, Boll. Un. Mat. Ital. (4) 2 (1969), 686–689.
  18. [18] I. Roşca, Semi-produit scalaire et représentations de type de Riesz pour les fonctionelles linéaires et bornées sur les espaces normés, C.R. Acad. Sci. Paris Sér. A–B 283 (1976), no. 3, Ai, A79–A81.
  19. [19] O. Shisha and B. Mond, Bounds on differences of means, in: O. Shisha (ed.), Inequalities, Academic Press, Inc., New York, 1967, pp. 293–308.
DOI: https://doi.org/10.2478/amsil-2019-0014 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 169 - 192
Submitted on: Mar 4, 2019
Accepted on: Dec 1, 2019
Published on: Feb 1, 2020
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Silvestru Sever Dragomir, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.