Have a personal or library account? Click to login
m-Convex Functions of Higher Order Cover
Open Access
|Dec 2019

References

  1. [1] S.S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 33 (2002), no. 1, 45–55.10.5556/j.tkjm.33.2002.304
  2. [2] S.S. Dragomir and G. Toader, Some inequalities for m-convex functions, Studia Univ. Babeş-Bolyai Math. 38 (1993), no. 1, 21–28.
  3. [3] R. Ger, Convex functions of higher orders in Euclidean spaces, Ann. Polon. Math. 25 (1972), 293–302.10.4064/ap-25-3-293-302
  4. [4] A. Gilányi and Z. Páles, On convex functions of higher order, Math. Inequal. Appl. 11 (2008), no. 2, 271–282.10.7153/mia-11-19
  5. [5] V. Janković, Divided differences, Teach. Math. 3 (2000), no. 2, 115–119.
  6. [6] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, Second edition, Edited by A. Gilányi, Birkhäuser Verlag, Basel, 2009.10.1007/978-3-7643-8749-5
  7. [7] T. Lara, N. Merentes, R. Quintero and E. Rosales, On strongly m-convex functions, Math. Æterna 5 (2015), no. 3, 521–535.
  8. [8] T. Lara, R. Quintero, E. Rosales and J.L. Sánchez, On a generalization of the class of Jensen convex functions, Aequationes Math. 90 (2016), no. 3, 569–580.10.1007/s00010-016-0406-2
  9. [9] T. Lara, E. Rosales and J.L. Sánchez, New properties of m-convex functions, Int. J. Math. Anal., Ruse 9 (2015), no. 15, 735–742.10.12988/ijma.2015.412389
  10. [10] N. Merentes and S. Rivas, The Develop of the Concept of Convex Function, XXVI Escuela Venezolana de Matemáticas, Mérida, Venezuela, 2013 (in Spanish).
  11. [11] K. Nikodem, T. Rajba and S. Wąsowicz, On the classes of higher-order Jensen-convex functions and Wright-convex functions, J. Math. Anal. Appl. 396 (2012), no. 1, 261–269.10.1016/j.jmaa.2012.06.028
  12. [12] T. Popoviciu, Sur quelques propriétés des fonctions d’une ou de deux variables réelles, Mathematica (Cluj) 8 (1934), 1–85.
  13. [13] G. Toader, Some generalizations of the convexity, in: I. Maruşciac et al. (eds.), Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca, 1985, pp. 329–338.
DOI: https://doi.org/10.2478/amsil-2019-0013 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 241 - 255
Submitted on: Mar 29, 2019
Accepted on: Oct 26, 2019
Published on: Dec 11, 2019
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Teodoro Lara, Nelson Merentes, Edgar Rosales, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.