[6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.10.4064/fm-3-1-133-181
[9] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), no. 9, 531–536.10.1155/S0161171202007524
[17] E. Karapınar, Some nonunique fixed point theorems of Ćirić type on cone metric spaces, Abstr. Appl. Anal. 2010, Art. ID 123094, 14 pp.10.1155/2010/123094
[22] M.O. Olatinwo, Non-unique fixed point theorems of Ciric’s type for rational hybrid contractions, Nanjing Daxue Xuebao Shuxue Bannian Kan 31 (2014), no. 2, 140–149.
[24] M.O. Olatinwo, Non-unique fixed point theorems of Achari and Ćirić-Jotić types for hybrid contractions, J. Adv. Math. Stud. 9 (2016), no. 2, 226–234.
[25] M.O. Olatinwo, Some stability and convergence results for Picard, Mann, Ishikawa and Jungck type iterative algorithms for Akram-Zafar-Siddiqui type contraction mappings, Nonlinear Anal. Forum 21 (2016), no. 1, 65–75.
[26] M.O. Olatinwo, Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions, Georgian Math. J. 24 (2017), no. 3, 455–461.10.1515/gmj-2016-0050
[28] B.E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 2003, no. 63, 4007–4013.10.1155/S0161171203208024
[32] E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986.10.1007/978-1-4612-4838-5