Have a personal or library account? Click to login

Some Generalizations of Non-Unique Fixed Point Theorems of Ćirić-type for (Φ, ψ)-Hybrid Contractive Mappings

Open Access
|Jul 2019

References

  1. [1] J. Achari, On Ćirić’s non-unique fixed points, Mat. Vesnik 13(28) (1976), no. 3, 255–257.
  2. [2] J. Achari, Results on nonunique fixed points, Publ. Inst. Math. (Beograd) (N.S.) 26(40) (1979), 5–9.
  3. [3] J. Achari, On the generalization of Pachpatte’s nonunique fixed point theorem, Indian J. Pure Appl. Math. 13 (1982), no. 3, 299–302.
  4. [4] R.P. Agarwal, M. Meehan and D. O’Regan, Fixed point theory and applications, Cambridge University Press, Cambridge, 2001.10.1017/CBO9780511543005
  5. [5] M. Akram, A.A. Zafar and A.A. Siddiqui, A general class of contractions: A-contractions, Novi Sad J. Math. 38 (2008), no. 1, 25–33.
  6. [6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.10.4064/fm-3-1-133-181
  7. [7] V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002.
  8. [8] V. Berinde, Iterative approximation of fixed points, Second edition, Springer, Berlin, 2007.10.1109/SYNASC.2007.49
  9. [9] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), no. 9, 531–536.10.1155/S0161171202007524
  10. [10] S.K. Chatterjea, Fixed-point theorems, C.R. Acad. Bulgare Sci. 25 (1972), 727–730.
  11. [11] L.B. Ćirić, On contraction type mappings, Math. Balkanica 1 (1971), 52–57.
  12. [12] L.B. Ćirić, On some maps with a nonunique fixed point, Publ. Inst. Math. (Beograd) (N.S.) 17(31) (1974), 52–58.
  13. [13] L.B. Ćirić, Some Recent Results in Metrical Fixed Point Theory, University of Belgrade, Belgrade, 2003.
  14. [14] L.B. Ćirić and N. Jotić, A further extension of maps with non-unique fixed points, Mat. Vesnik 50 (1998), no. 1–2, 1–4.
  15. [15] D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math. 8 (1977), no. 2, 223–230.
  16. [16] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71–76.10.2307/2316437
  17. [17] E. Karapınar, Some nonunique fixed point theorems of Ćirić type on cone metric spaces, Abstr. Appl. Anal. 2010, Art. ID 123094, 14 pp.10.1155/2010/123094
  18. [18] M.A. Khamsi and W.A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Wiley-Interscience, New York, 2001.10.1002/9781118033074
  19. [19] M.G. Maia, Un’osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova, 40 (1968), 139–143.
  20. [20] M.O. Olatinwo, Some new fixed point theorems in complete metric spaces, Creat. Math. Inform. 21 (2012), no. 2, 189–196.10.37193/CMI.2012.02.14
  21. [21] M.O. Olatinwo, Some Banach type fixed point theorems and implicit type error estimates, Kochi J. Math. 8 (2013), 105–117.
  22. [22] M.O. Olatinwo, Non-unique fixed point theorems of Ciric’s type for rational hybrid contractions, Nanjing Daxue Xuebao Shuxue Bannian Kan 31 (2014), no. 2, 140–149.
  23. [23] M.O. Olatinwo, Some Ciric’s type non-unique fixed point theorems and rational type contractive conditions, Kochi J. Math. 10 (2015), 1–9.
  24. [24] M.O. Olatinwo, Non-unique fixed point theorems of Achari and Ćirić-Jotić types for hybrid contractions, J. Adv. Math. Stud. 9 (2016), no. 2, 226–234.
  25. [25] M.O. Olatinwo, Some stability and convergence results for Picard, Mann, Ishikawa and Jungck type iterative algorithms for Akram-Zafar-Siddiqui type contraction mappings, Nonlinear Anal. Forum 21 (2016), no. 1, 65–75.
  26. [26] M.O. Olatinwo, Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions, Georgian Math. J. 24 (2017), no. 3, 455–461.10.1515/gmj-2016-0050
  27. [27] B.G. Pachpatte, On Ćirić type maps with a nonunique fixed point, Indian J. Pure Appl. Math. 10 (1979), no. 8, 1039–1043.
  28. [28] B.E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 2003, no. 63, 4007–4013.10.1155/S0161171203208024
  29. [29] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
  30. [30] I.A. Rus and A. Petruşel, G. Petruşel, Fixed Point Theory: 1950–2000. Romanian Contributions, House of the Book of Science, Cluj–Napoca, 2002.
  31. [31] T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel) 23 (1972), 292–298.10.1007/BF01304884
  32. [32] E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986.10.1007/978-1-4612-4838-5
DOI: https://doi.org/10.2478/amsil-2019-0010 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 221 - 234
Submitted on: Nov 17, 2018
Accepted on: May 31, 2019
Published on: Jul 18, 2019
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 Memudu O. Olatinwo, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.