Have a personal or library account? Click to login

Finite, Fiber- and Orientation-Preserving Group Actions on Totally Orientable Seifert Manifolds

Open Access
|Jul 2019

References

  1. [1] F. Bonahon, Geometric structures on 3-manifolds, in: R.J. Daverman, R.B. Sher (eds.), Handbook of Geometric Topology, Elsevier, Amsterdam, 2002, pp. 93–164.10.1016/B978-044482432-5/50004-4
  2. [2] R.D. Canary and D. McCullough, Homotopy Equivalences of 3-Manifolds and Deformation Theory of Kleinian Groups, Mem. Amer. Math. Soc. 172 (2004), no. 812, 218 pp.10.1090/memo/0812
  3. [3] A.L. Edmonds, A topological proof of the equivariant Dehn lemma, Trans. Amer. Math. Soc. 297 (1986), no. 2, 605–615.10.1090/S0002-9947-1986-0854087-X
  4. [4] J. Hempel, 3-Manifolds, AMS Chelsea Publishing, Providence, 2004.10.1090/chel/349
  5. [5] M. Jankins and W. D. Neumann, Lectures on Seifert Manifolds, Brandeis Lecture Notes, 2, Brandeis University, Waltham, 1983.
  6. [6] J. Kalliongis and A. Miller, The symmetries of genus one handlebodies, Canad. J. Math. 43 (1991), no. 2, 371–404.10.4153/CJM-1991-022-1
  7. [7] J. Kalliongis and R. Ohashi, Finite actions on the 2-sphere, the projective plane and I-bundles over the projective plane, Ars Math. Contemp. 15 (2018), no. 2, 297–321.10.26493/1855-3974.806.c9d
  8. [8] J.M. Lee, Smooth manifolds, in: J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, Springer-Verlag, New York, 2003, pp. 1–29.10.1007/978-0-387-21752-9_1
  9. [9] W.H. Meeks and P. Scott, Finite group actions on 3-manifolds, Invent. Math. 86 (1986), no. 2, 287–346.10.1007/BF01389073
  10. [10] W.D. Neumann and F. Raymond, Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, in: K.C. Millett (ed.), Algebraic and geometric topology, Lecture Notes in Math., 664, Springer, Berlin, 1978, pp. 163–196.10.1007/BFb0061699
  11. [11] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487.10.1112/blms/15.5.401
  12. [12] H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238.10.1007/BF02398271
  13. [13] W.P. Thurston, The Geometry and Topology of Three-Manifolds, Lecture Notes, 1979.
DOI: https://doi.org/10.2478/amsil-2019-0007 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 235 - 265
Submitted on: Mar 7, 2019
Accepted on: May 14, 2019
Published on: Jul 18, 2019
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 Benjamin Peet, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.