[2] R. Badora, B. Przebieracz, P. Volkmann, On Tabor groupoids and stability of some functional equations, Aequationes Math. 87 (2014), no. 1–2, 165–171.10.1007/s00010-013-0206-x
[5] G.-L. Forti, The stability of homomorphisms and amenability, with applications to functional equations, Abh. Math. Sem. Univ. Hamburg 57 (1987), 215–226.10.1007/BF02941612
[8] Z. Gajda, Z. Kominek, On separation theorems for subadditive and superadditive functionals, Studia Math. 100 (1991), no. 1, 25–38.10.4064/sm-100-1-25-38
[9] F.P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Mathematical Studies 16, Van Nostrand Reinhold Co., New York–Toronto–London–Melbourne, 1969.
[10] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.10.1073/pnas.27.4.222107831016578012
[11] S.V. Ivanov, The free Burnside groups of sufficiently large exponents, Internat. J. Algebra Comput. 4 (1994), no. 1–2, 1–308.10.1142/S0218196794000026
[14] A.Yu. Ol’shanskii, On the question of the existence of an invariant mean on a group. (Russian), Uspekhi Mat. Nauk 35 (1980), no. 4(214), 199–200.10.1070/RM1980v035n04ABEH001876
[17] J. Rätz, On approximately additive mappings, in: E.F. Beckenbach (ed.), General Inequalities. 2, Proc. Second Internat. Conf., Oberwolfach 1978, Birkhäuser, Basel, 1980, pp. 233–251.10.1007/978-3-0348-6324-7_22
[19] E. Shulman, Addition theorems and related geometric problems of group representation theory, in: J. Brzd¦k et al. (eds.), Recent Developments in Functional Equations and Inequalities, Banach Center Publ., vol. 99, Polish Acad. Sci. Inst. Math., Warsaw, 2013, pp. 155–172.10.4064/bc99-0-10
[20] F. Skof, Proprietà locali e approssimazione di operatori. Geometry of Banach spaces and related topics (Milan, 1983), Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129 (1986).10.1007/BF02924890
[25] D. Yang, Remarks on the stability of Drygas’ equation and the Pexider–quadratic equation, Aequationes Math. 68 (2004), no. 1–2, 108–116.10.1007/s00209-003-0573-4
[26] D. Yang, The stability of the quadratic functional equation on amenable groups, J. Math. Anal. Appl. 291 (2004), no. 2, 666–672.10.1016/j.jmaa.2003.11.021