Have a personal or library account? Click to login
Open Access
|Jul 2019

References

  1. [1] P. Aczel and N. Mendler, A final coalgebra theorem, in: D.H. Pitt et al. (Eds.), Category Theory and Computer Science, Lecture Notes in Comput. Sci., 389, Springer, Berlin, 1989, pp. 357–365.10.1007/BFb0018361
  2. [2] M. Barr and C. Wells, Toposes, Triples and Theories. Corrected reprint of the 1985 original. Repr. Theory Appl. Categ. 12 (2005), 1–288.10.1007/978-1-4899-0021-0_8
  3. [3] H.P. Gumm, Elements of the general theory of coalgebras, LUATCS’99, Rand Africaans University, Johannesburg, South Africa, 1999.
  4. [4] P.T. Johnstone, Topos Theory, Academic Press, London-New York, 1977.
  5. [5] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe, and J. Worrell, On the structure of categories of coalgebras, Theoret. Comput. Sci. 260 (2001), no. 1–2, 87–117.10.1016/S0304-3975(00)00124-9
  6. [6] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000), no. 1, 3–80.10.1016/S0304-3975(00)00056-6
  7. [7] S. Staton, Relating coalgebraic notions of bisimulation, Log. Methods Comput. Sci. 7 (2011), no. 1, 1:13, 21 pp.10.2168/LMCS-7(1:13)2011
DOI: https://doi.org/10.2478/amsil-2018-0014 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 210 - 220
Submitted on: Feb 23, 2018
Accepted on: Oct 28, 2018
Published on: Jul 18, 2019
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 Jean-Paul Mavoungou, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.