Have a personal or library account? Click to login

D-Homothetically Deformed Kenmotsu Metric as a Ricci Soliton

Open Access
|Jul 2019

References

  1. [1] Bejan C.L., Crasmareanu M., Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Ann. Global Anal. Geom. 46 (2014), no. 2, 117–127.10.1007/s10455-014-9414-4
  2. [2] Blair D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin–Heidelberg, 1976.10.1007/BFb0079307
  3. [3] De U.C., Yildiz A., Yalınız A.F., On ffi-recurrent Kenmotsu manifolds, Turkish J. Math. 33 (2009), no. 1, 17–25.10.3906/mat-0711-10
  4. [4] De U.C., Ghosh S., D-homothetic deformation of normal almost contact metric manifolds, Ukrainian Math. J. 64 (2013), no. 10, 1514–1530.10.1007/s11253-013-0732-7
  5. [5] Ghosh A., Sharma R., K-contact metrics as Ricci solitons, Beitr. Algebra Geom. 53 (2012), no. 1, 25–30.10.1007/s13366-011-0038-6
  6. [6] Ghosh A., Sharma R., Sasakian metric as a Ricci soliton and related results, J. Geom. Phys. 75 (2014), 1–6.10.1016/j.geomphys.2013.08.016
  7. [7] Nagaraja H.G., Premalatha C.R., Da-homothetic deformation of K-contact manifolds, ISRN Geom. 2013, Art. ID 392608, 7 pp.10.1155/2013/392608
  8. [8] Nagaraja H.G., Premalatha C.R., Ricci solitons in f-Kenmotsu manifolds and 3-dimensional trans-Sasakian manifolds, Progr. Appl. Math. 3 (2012), no. 2, 1–6.
  9. [9] Nagaraja H.G., Premalatha C.R., Ricci solitons in Kenmotsu manifolds, J. Math. Anal. 3 (2012), no. 2, 18–24.10.5402/2012/970682
  10. [10] Shaikh A.A., Baishya K.K., Eyasmin S., On D-homothetic deformation of trans-Sasakian structure, Demonstratio Math. 41 (2008), no. 1, 171–188.10.1515/dema-2013-0053
  11. [11] Sharma R., Certain results on K-contact and (k, µ)-contact manifolds, J. Geom. 89 (2008), no. 1, 138–147.10.1007/s00022-008-2004-5
  12. [12] Sharma R., Ghosh A., Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group, Int. J. Geom. Methods Mod. Phys. 8 (2011), no. 1, 149–154.10.1142/S021988781100504X
  13. [13] Tanno S., The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700–717.10.1215/ijm/1256053971
  14. [14] Yano K., Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970.
  15. [15] Yildiz A., De U.C., Turan M., On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65 (2013), no. 5, 684–693.10.1007/s11253-013-0806-6
DOI: https://doi.org/10.2478/amsil-2018-0010 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 143 - 152
Submitted on: Jul 21, 2017
Accepted on: Aug 25, 2018
Published on: Jul 18, 2019
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 D.L. Kiran Kumar, H.G. Nagaraja, K. Venu, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.