Have a personal or library account? Click to login
Stability of Functional Equations in Dislocated Quasi-Metric Spaces Cover

Stability of Functional Equations in Dislocated Quasi-Metric Spaces

By: Beata Hejmej  
Open Access
|Aug 2018

References

  1. [1] Amini-Harandi A., Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012, 2012:204, 10 pp.10.1186/1687-1812-2012-204
  2. [2] Bahyrycz A., Piszczek M., Hyperstability of the Jensen functional equation, Acta Math. Hungar. 142 (2014), 353-365.10.1007/s10474-013-0347-3
  3. [3] Brillouët-Belluot N., Brzdek J., Cieplinski K., On some recent developments in Ulam’s type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp.10.1155/2012/716936
  4. [4] Brzdek J., On a method of proving the Hyers-Ulam stability of functional equations on restricted domains, Aust. J. Math. Anal. Appl. 6 (2009), Art. 4, 10 pp.
  5. [5] Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.10.1073/pnas.27.4.222107831016578012
  6. [6] Hyers D.H., Isac G., Rassias T.M., Stability of Functional Equations in Several Variables, Birkhäuser Boston, Boston, 1998.10.1007/978-1-4612-1790-9
  7. [7] Piszczek M., Remark on hyperstability of the general linear equation, Aequationes Math. 88 (2014), 163-168.10.1007/s00010-013-0214-x
  8. [8] Piszczek M., Hyperstability of the general linear functional equation, Bull. Korean Math. Soc. 52 (2015), 1827-1838.10.4134/BKMS.2015.52.6.1827
  9. [9] Rahman M.U., Sarwar M., Some new fixed point theorems in dislocated quasi-metric spaces, Palest. J. Math. 5 (2016), 171-176.10.18576/amisl/050102
  10. [10] Sarwar M., Rahman M.U., Ali G., Some fixed point results in dislocated quasi-metric (dq-metric) spaces, J. Inequal. Appl. 2014, 2014:278, 11 pp.10.1186/1029-242X-2014-278
  11. [11] Ulam S.M., A Collection of Mathematical Problems, Interscience Publishers, New York-London, 1960. Reprinted as: Problems in Modern Mathematics, John Wiley & Sons, New York, 1964.
DOI: https://doi.org/10.2478/amsil-2018-0005 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 215 - 225
Submitted on: Sep 30, 2017
Accepted on: Apr 11, 2018
Published on: Aug 24, 2018
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Beata Hejmej, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.