[1] Blanford, J. I., Blanford, S., Crane, R. G., Mann, M. E., Paaijmans, K. P., Schreiber, K. V. and Thomas, M. B., (2013), Implications of temperature variation for malaria parasite development across Africa, doi: <a href="https://doi.org/10.1038/srep01300.10.1038/srep01300" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/srep01300.10.1038/srep01300</a>
[2] Shapiro, L. L. M., Whitehead, S. A. and Thomas, M. B., Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria, doi: <a href="https://doi.org/10.1371/journal.pbio.2003489.10.1371/journal.pbio.2003489" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pbio.2003489.10.1371/journal.pbio.2003489</a>
[3] Olaniyi, S. and Obabiyi, O. S. (2013), Mathematical Model for Malaria Transmission Dynamics in Human And Mosquito Populations With Nonlinear Forces of Infection, International Journal of Pure and Applied Mathematics, 88 No.1, pp. 125-156, doi:<a href="https://doi.org/10.12732/ijpam." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.12732/ijpam.</a> v88i1.10.
[5] Chitnis, N., Hyman, J. M., and Manore, C.A., (2013), Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever, Biological Dynamics, 7, pp. 11-40, doi: <a href="https://doi.org/10.1080/17513756.2012.733427." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17513756.2012.733427.</a>
[7] Labadin, J., C. Kon, M.L. and Juan, S. F. S., (2009), Deterministic malaria transmission model with acquired immunity, Proceedings of the world Congress on Engineering and Computer Science, II, pp. 1-6.
[9] van den Driessche, P., Watmough, J. (2001), Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Canada10.1016/S0025-5564(02)00108-6
[10] Diekmann, O., Heesterbeek, J. A. P. and Metz, J. A. J. (1990), On the de nition and thecomputation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, Mathematical Biology, 28, pp. 365-382.
[11] Mandal, S., Sarkar, R. R. and Sinha, S. (2011), Mathematical models of malaria - a review, Malaria Journal, 10:20210.1186/1475-2875-10-202316258821777413
[13] Faragó, I., Mincsovics, M. and Mosleh, R. (2018), Reliable numerical modelling of malaria propagation, Application of Mathematics, Springer, 63, No.3, pp. 259-271, doi:<a href="https://doi.org/10.21136/AM.2018.0098-18.10.21136/AM.2018.0098-18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21136/AM.2018.0098-18.10.21136/AM.2018.0098-18</a>
[14] Faragó, I. and Dorner, F. (2019), Two Epidemic Propagation Models and Their Properties, Lecture Notes in Computer Science, Springer.<a href="https://doi.org/10.1007/978-3-030-55347-0_18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-030-55347-0_18</a>