Have a personal or library account? Click to login
A data-driven approach to PCOS Diagnosis: Systematic review of machine learning applications in reproductive health Cover

A data-driven approach to PCOS Diagnosis: Systematic review of machine learning applications in reproductive health

Open Access
|Dec 2025

References

  1. Suha SA, Islam MN. An extended machine learning technique for polycystic ovary syndrome detection using ovary ultrasound image. Scientific Reports [Internet]. 2022 Oct 12;12(1). Available from: https://doi.org/10.1038/s41598-022-21724-0
  2. Lv W, Song Y, Fu R, Lin X, Su Y, Jin X, et al. Deep learning algorithm for Automated Detection of Polycystic Ovary Syndrome using scleral Images. Frontiers in Endocrinology [Internet]. 2022 Jan 27;12. Available from: https://doi.org/10.3389/fendo.2021.789878
  3. S S, Umapathy S, Alhajlah O, Almutairi F, Aslam S, K AR. F-Net: Follicles Net an efficient tool for the diagnosis of polycystic ovarian syndrome using deep learning techniques. PLoS ONE [Internet]. 2024 Aug 15;19(8):e0307571. Available from: https://doi.org/10.1371/journal.pone.0307571
  4. Rachana B, Priyanka T, Sahana KN, Supritha TR, Parameshachari BD, Sunitha R. Detection of polycystic ovarian syndrome using follicle recognition technique. Global Transitions Proceedings [Internet]. 2021 Aug 12;2(2):304–8. Available from: https://doi.org/10.1016/j.gltp.2021.08.010
  5. Luo P, Zhang C, He Y, Yang G, Liu H, Li L. Several circulating biomarkers for PCOS diagnosis. Experimental and Clinical Endocrinology & Diabetes [Internet]. 2019 Nov 4;129(10):705–12. Available from: https://doi.org/10.1055/a-1025-3711
  6. Sumathi M, Chitra P, Prabha RS, Srilatha K. Study and detection of PCOS related diseases using CNN. IOP Conference Series Materials Science and Engineering [Internet]. 2021 Feb 23;1070:012062. Available from: https://doi.org/10.1088/1757-899x/1070/1/012062
  7. Xu H, Feng G, Alpadi K, Han Y, Yang R, Chen L, et al. A model for predicting polycystic ovary syndrome using serum AMH, menstrual cycle length, body mass index and serum androstenedione in Chinese reproductive aged population: a retrospective cohort study. Frontiers in Endocrinology [Internet]. 2022 Mar 17;13. Available from: https://doi.org/10.3389/fendo.2022.821368
  8. Soni K, R K, Gangwar R, Singh R, Shukla M, Syed SF. ARTIFICIAL INTELLIGENCE IN MEDICAL IMAGING: ENHANCING DIAGNOSTIC ACCURACY. EPH - International Journal of Medical and Health Science [Internet]. 2025 Jan 1; Available from: https://doi.org/10.53555/eijmhs.v11i1.255
  9. Vora K, Shah A, Shah N, Verma P. Prediction of polycystic ovary syndrome (PCOS) using optimized machine learning classifiers. In: Algorithms for intelligent systems [Internet]. 2023. p. 1–12. Available from: https://doi.org/10.1007/978-981-19-7041-2_1
  10. Bhat V V, V SK, R T, S MB, T A. Assistive PCOS Detection Platform with Clinical Data and Ultrasound Scan using Machine Learning. EBSCOhost [Internet]. 2024 Jan 1; Available from: https://openurl.ebsco.com/EPDB%3Agcd%3A11%3A34766747/detailv2?sid=ebsco%3Aplink%3Acrawler&id=ebsco%3Agcd%3A175658218&link_origin=www.google.com
  11. Kermanshahchi J, Reddy AJ, Xu J, Mehrok GK, Nausheen F. Development of a Machine Learning-Based model for accurate detection and classification of polycystic ovary syndrome on pelvic ultrasound. Cureus [Internet]. 2024 Jul 22; Available from: https://doi.org/10.7759/cureus.65134
  12. Zad Z, Jiang VS, Wolf AT, Wang T, Cheng JJ, Paschalidis ICh, et al. Predicting polycystic ovary syndrome with machine learning algorithms from electronic health records. Frontiers in Endocrinology [Internet]. 2024 Jan 30;15. Available from: https://doi.org/10.3389/fendo.2024.1298628
  13. Barrera FJ, Brown EDL, Rojo A, Obeso J, Plata H, Lincango EP, et al. Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: a systematic review. Frontiers in Endocrinology [Internet]. 2023 Sep 18;14. Available from: https://doi.org/10.3389/fendo.2023.1106625
  14. Lim J, Li J, Feng X, Feng L, Xiao X, Xia Y, et al. Machine learning-based evaluation of application value of traditional Chinese medicine clinical index and pulse wave parameters in the diagnosis of polycystic ovary syndrome. European Journal of Integrative Medicine [Internet]. 2023 Oct 14;64:102311. Available from: https://doi.org/10.1016/j.eujim.2023.102311
  15. Elmannai H, El-Rashidy N, Mashal I, Alohali MA, Farag S, El-Sappagh S, et al. Polycystic ovary syndrome detection machine learning model based on optimized feature selection and explainable artificial intelligence. Diagnostics [Internet]. 2023 Apr 21;13(8):1506. Available from: https://doi.org/10.3390/diagnostics13081506
  16. Ahmad R, Maghrabi LA, Khaja IA, Maghrabi LA, Ahmad M. SMOTE-Based Automated PCOS prediction using lightweight deep learning models. Diagnostics [Internet]. 2024 Oct 5;14(19):2225. Available from: https://doi.org/10.3390/diagnostics14192225
  17. Lee S, Arffman RK, Komsi EK, Lindgren O, Kemppainen JA, Metsola H, et al. AI-algorithm training and validation for identification of endometrial CD138+ cells in infertility-associated conditions; polycystic ovary syndrome (PCOS) and recurrent implantation failure (RIF). Journal of Pathology Informatics [Internet]. 2024 Apr 29;15:100380. Available from: https://doi.org/10.1016/j.jpi.2024.100380
  18. Zhang X, Liang B, Zhang J, Hao X, Xu X, Chang HM, et al. Raman spectroscopy of follicular fluid and plasma with machine-learning algorithms for polycystic ovary syndrome screening. Molecular and Cellular Endocrinology [Internet]. 2021 Jan 8;523:111139. Available from: https://doi.org/10.1016/j.mce.2020.111139
  19. Alamoudi A, Khan IU, Aslam N, Alqahtani N, Alsaif HS, Dandan OA, et al. A deep learning fusion approach to diagnosis the polycystic ovary syndrome (PCOS). Applied Computational Intelligence and Soft Computing [Internet]. 2023 Feb 14;2023:1–15. Available from: https://doi.org/10.1155/2023/9686697
  20. Mridul, A. H., Ahsan, N., Alam, S. S., Afrose, S., & Sultana, Z. (2024). Polycystic Ovary Syndrome (PCOS) Disease Prediction Using Traditional Machine Learning and Deep Learning Algorithms. International Journal of Computer Information Systems and Industrial Management Applications, 16(3), 25-25.
  21. Wu Y, Xiao Q, Wang S, Xu H, Fang Y. Establishment and analysis of an artificial neural network model for early detection of polycystic ovary syndrome using machine learning techniques. Journal of Inflammation Research [Internet]. 2023 Nov 1;Volume 16:5667–76. Available from: https://doi.org/10.2147/jir.s438838
  22. Nsugbe E. An artificial intelligence-based decision support system for early diagnosis of polycystic ovaries syndrome. Healthcare Analytics [Internet]. 2023 Mar 21;3:100164. Available from: https://doi.org/10.1016/j.health.2023.10016
  23. Dutta P, Paul S, Majumder M. An Efficient SMOTE Based Machine Learning classification for Prediction & Detection of PCOS. Research Square (Research Square) [Internet]. 2021 Nov 8; Available from: https://doi.org/10.21203/rs.3.rs-1043852/v1
  24. M NS, V S, P P, K V, Min D. Advanced Diagnosis of Polycystic Ovarian Syndrome using Machine Learning and Multimodal Data Integration. International Journal of Advanced Computer Science and Applications [Internet]. 2024 Jan 1;15(6). Available from: https://doi.org/10.14569/ijacsa.2024.01506122
  25. Neha N, Kumar AR, Pande SD. Comparative analysis of polycystic ovary syndrome detection using deep learning Algorithms. In: Lecture notes in electrical engineering [Internet]. 2024. p. 353–63. Available from: https://doi.org/10.1007/978-981-97-4359-9_35
  26. G UM, P UM. SmartScanPCOS: A Feature-Driven Approach to Cutting-Edge Prediction of Polycystic Ovary Syndrome using Machine Learning and Explainable Artificial Intelligence. Heliyon [Internet]. 2024 Oct 1;10(20): e39205. Available from: https://doi.org/10.1016/j.heliyon.2024.e39205
  27. Rahman MM, Islam A, Islam F, Zaman M, Islam MR, Sakib MSA, et al. Empowering early detection: A web-based machine learning approach for PCOS prediction. Informatics in Medicine Unlocked [Internet]. 2024 Jan 1;47:101500. Available from: https://doi.org/10.1016/j.imu.2024.101500
  28. Khanna VV, Chadaga K, Sampathila N, Prabhu S, Bhandage V, Hegde GK. A distinctive explainable machine learning framework for detection of polycystic ovary syndrome. Applied System Innovation [Internet]. 2023 Feb 23;6(2):32. Available from: https://doi.org/10.3390/asi6020032
  29. Bharati S, Podder P, Mondal MRH, Prasath VBS, Gandhi N. Ensemble Learning for Data-Driven Diagnosis of Polycystic Ovary Syndrome. In: Lecture notes in networks and systems [Internet]. 2022. p. 1250–9. Available from: https://doi.org/10.1007/978-3-030-96308-8_116
  30. P RK, C NN. Op-RMSprop (Optimized-Root Mean Square Propagation) Classification for Prediction of Polycystic Ovary Syndrome (PCOS) using Hybrid Machine Learning Technique. International Journal of Advanced Computer Science and Applications [Internet]. 2022 Jan 1;13(6). Available from: https://doi.org/10.14569/ijacsa.2022.0130671
  31. View of polycystic ovary Syndrome (PCOS) disease prediction using traditional machine learning and deep learning algorithms [Internet]. Available from: https://cspub-ijcisim.org/index.php/ijcisim/article/view/712/597
DOI: https://doi.org/10.2478/amma-2025-0054 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 290 - 302
Submitted on: Apr 25, 2025
Accepted on: Sep 18, 2025
Published on: Dec 11, 2025
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 V P Akshay, Ritvik Sriram, Keerthana, N S Delna, Pranav Verma, Bhanu Verma, Mansi Trivedi, Shanmukhi Mogalipuvvu, Sasikala Kathiresan, Lalitha Soumya Johnson, Bhavit Bansal, Muhammed Asif, Shubhrit Shrivastava, Liya Sebastian, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.