Have a personal or library account? Click to login
Autonomic modulation in ventricular arrhythmias: Clinical insights and therapeutic opportunities Cover

Autonomic modulation in ventricular arrhythmias: Clinical insights and therapeutic opportunities

Open Access
|Dec 2025

References

  1. Kumar A, Avishay DM, Jones CR, et al. Sudden cardiac death: epidemiology, pathogenesis and management. Rev Cardiovasc Med 2021;22:147. https://doi.org/10.31083/j.rcm.2021.01.207.
  2. Wong CX, Brown A, Lau DH, et al. Epidemiology of Sudden Cardiac Death: Global and Regional Perspectives. Heart, Lung and Circulation 2019;28:6–14. https://doi.org/10.1016/j.hlc.2018.08.026.
  3. Cho JH. Sudden Death and Ventricular Arrhythmias in Heart Failure With Preserved Ejection Fraction. Korean Circ J 2022;52:251. https://doi.org/10.4070/kcj.2021.0420.
  4. Wu P, Vaseghi M. The autonomic nervous system and ventricular arrhythmias in myocardial infarction and heart failure. Pacing Clinical Electrophis 2020;43:172–80. https://doi.org/10.1111/pace.13856.
  5. Chatterjee NA, Singh JP. Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. EP Europace 2021;23:1708–21. https://doi.org/10.1093/europace/euab118.
  6. Van Weperen VYH, Vos MA, Ajijola OA. Autonomic modulation of ventricular electrical activity: recent developments and clinical implications. Clin Auton Res 2021;31:659–76. https://doi.org/10.1007/s10286-021-00823-4.
  7. Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer’s disease. Front Physiol 2023;14:1060666. https://doi.org/10.3389/fphys.2023.1060666.
  8. Durães Campos I, Pinto V, Sousa N, Pereira VH. A brain within the heart: A review on the intracardiac nervous system. Journal of Molecular and Cellular Cardiology 2018;119:1–9. https://doi.org/10.1016/j.yjmcc.2018.04.005.
  9. Aksu T, Gupta D, Pauza DH. Anatomy and Physiology of Intrinsic Cardiac Autonomic Nervous System. JACC: Case Reports 2021;3:625–9. https://doi.org/10.1016/j.jaccas.2021.02.018.
  10. Zandstra TE, Notenboom RGE, Wink J, et al. Asymmetry and Heterogeneity: Part and Parcel in Cardiac Autonomic Innervation and Function. Front Physiol 2021;12:665298. https://doi.org/10.3389/fphys.2021.665298.
  11. Tonko JB, Lambiase PD. The proarrhythmogenic role of autonomics and emerging neuromodulation approaches to prevent sudden death in cardiac ion channelopathies. Cardiovascular Research 2024;120:114–31. https://doi.org/10.1093/cvr/cvae009.
  12. Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Phil Trans R Soc B 2023;378:20220164. https://doi.org/10.1098/rstb.2022.0164.
  13. Maltsev AV, Yaniv Y, Stern MD, Lakatta EG, Maltsev VA. RyR-NCXSERCA Local Cross-Talk Ensures Pacemaker Cell Function at Rest and During the Fight-or-Flight Reflex. Circulation Research 2013;113. https://doi.org/10.1161/CIRCRESAHA.113.302465.
  14. Van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023;33:491–517. https://doi.org/10.1007/s10286-023-00948-8.
  15. Lei M, Salvage SC, Jackson AP, Huang CL-H. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024;15:1342761. https://doi.org/10.3389/fphys.2024.1342761.
  16. Ghigo A, Harvey RD. Illuminating cAMP Dynamics at Ryanodine Receptors in Arrhythmias. Circulation Research 2021;129:95–7. https://doi.org/10.1161/CIRCRESAHA.121.319449.
  17. Liu X, Yu Y, Zhang H, Zhang M, Liu Y. The Role of Muscarinic Acetylcholine Receptor M3 in Cardiovascular Diseases. IJMS 2024;25:7560. https://doi.org/10.3390/ijms25147560.
  18. Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic Nervous System Dysfunction. Journal of the American College of Cardiology 2019;73:1189–206. https://doi.org/10.1016/j.jacc.2018.12.064.
  19. Hadaya J, Dajani A-H, Cha S, et al. Vagal Nerve Stimulation Reduces Ventricular Arrhythmias and Mitigates Adverse Neural Cardiac Remodeling Post–Myocardial Infarction. JACC: Basic to Translational Science 2023;8:1100–18. https://doi.org/10.1016/j.jacbts.2023.03.025.
  20. Van Bilsen M, Patel HC, Bauersachs J, et al. The autonomic nervous system as a therapeutic target in heart failure: a scientific position statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. European J of Heart Fail 2017;19:1361–78. https://doi.org/10.1002/ejhf.921.
  21. Kay MW, Jain V, Panjrath G, Mendelowitz D. Targeting Parasympathetic Activity to Improve Autonomic Tone and Clinical Outcomes. Physiology 2022;37:39–45. https://doi.org/10.1152/physiol.00023.2021.
  22. Bernardi J, Aromolaran KA, Zhu H, Aromolaran AS. Circadian Mechanisms: Cardiac Ion Channel Remodeling and Arrhythmias. Front Physiol 2021;11:611860. https://doi.org/10.3389/fphys.2020.611860.
  23. Meijborg VMF, Boukens BJD, Janse MJ, et al. Stellate ganglion stimulation causes spatiotemporal changes in ventricular repolarization in pig. Heart Rhythm 2020;17:795–803. https://doi.org/10.1016/j.hrthm.2019.12.022.
  24. Opthof T, Dekker LRC, Coronel R, Vermeulen JT, Capelle FJLV, Janse MJ. Interaction of sympathetic and parasympathetic nervous system on ventricular refractoriness assessed by local fibrillation intervals in the canine heart. Cardiovascular Research 1993;27:753–9. https://doi.org/10.1093/cvr/27.5.753.
  25. Boukens BJD, Dacey M, Meijborg VMF, et al. Mechanism of ventricular premature beats elicited by left stellate ganglion stimulation during acute ischaemia of the anterior left ventricle. Cardiovascular Research 2021;117:2083–91. https://doi.org/10.1093/cvr/cvaa253.
  26. Kalla M, Hao G, Tapoulal N, et al. The cardiac sympathetic co-transmitter neuropeptide Y is pro-arrhythmic following ST-elevation myocardial infarction despite beta-blockade. European Heart Journal 2020;41:2168–79. https://doi.org/10.1093/eurheartj/ehz852.
  27. Sung E, Etoz S, Zhang Y, Trayanova NA. Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications. Biophysics Reviews 2021;2:031304. https://doi.org/10.1063/5.0058050.
  28. Pereira H, Niederer S, Rinaldi CA. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. EP Europace 2020;22:1447–62. https://doi.org/10.1093/europace/euaa165.
  29. Burri H, Chevalier P, Arzi M, Rubel P, Kirkorian G, Touboul P. Wavelet transform for analysis of heart rate variability preceding ventricular arrhythmias in patients with ischemic heart disease. International Journal of Cardiology 2006;109:101–7. https://doi.org/10.1016/j.ijcard.2005.06.001.
  30. Bauer J, Vlcek J, Pauly V, et al. Biomarker Periodic Repolarization Dynamics Indicates Enhanced Risk for Arrhythmias and Sudden Cardiac Death in Myocardial Infarction in Pigs. JAHA 2024;13:e032405. https://doi.org/10.1161/JAHA.123.032405.
  31. Schüttler D, Hamm W, Bauer A, Brunner S. Routine heart rate-based and novel ECG-based biomarkers of autonomicnervous system in sports medicine. Dtsch Z Sportmed 2020;71:141–50. https://doi.org/10.5960/dzsm.2020.428.
  32. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. Journal of Nuclear Cardiology 2004;11:603–16. https://doi.org/10.1016/j.nuclcard.2004.06.133.
  33. Xie E, Sung E, Saad E, Trayanova N, Wu KC, Chrispin J. Advanced imaging for risk stratification for ventricular arrhythmias and sudden cardiac death. Front Cardiovasc Med 2022;9:884767. https://doi.org/10.3389/fcvm.2022.884767.
  34. Du X, Zhao W, Nguyen M, Lu Q, Kiriazis H. β-Adrenoceptor activation affects galectin-3 as a biomarker and therapeutic target in heart disease. British J Pharmacology 2019;176:2449–64. https://doi.org/10.1111/bph.14620.
  35. Hu H, Xuan Y, Xue M, et al. Semaphorin 3A attenuates cardiac autonomic disorders and reduces inducible ventricular arrhythmias in rats with experimental myocardial infarction. BMC Cardiovasc Disord 2016;16:16. https://doi.org/10.1186/s12872-016-0192-8.
  36. Serra D, Romero P, Franco P, et al. Unsupervised stratification of patients with myocardial infarction based on imaging and in-silico biomarkers 2024. https://doi.org/10.48550/arXiv.2409.06526.
  37. Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic Modulation of Cardiac Arrhythmias. JACC: Clinical Electrophysiology 2020;6:467–83. https://doi.org/10.1016/j.jacep.2020.02.014.
  38. Howard-Quijano K, Takamiya T, Dale EA, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. American Journal of Physiology-Heart and Circulatory Physiology 2017;313:H421–31. https://doi.org/10.1152/ajpheart.00129.2017.
  39. Issa ZF, Zhou X, Ujhelyi MR, et al. Thoracic Spinal Cord Stimulation Reduces the Risk of Ischemic Ventricular Arrhythmias in a Postinfarction Heart Failure Canine Model. Circulation 2005;111:3217–20. https://doi.org/10.1161/CIRCULATIONAHA.104.507897.
  40. Lopshire JC, Zhou X, Dusa C, et al. Spinal Cord Stimulation Improves Ventricular Function and Reduces Ventricular Arrhythmias in a Canine Postinfarction Heart Failure Model. Circulation 2009;120:286–94. https://doi.org/10.1161/CIRCULATIONAHA.108.812412.
  41. Tse H-F, Turner S, Sanders P, et al. Thoracic Spinal Cord Stimulation for Heart Failure as a Restorative Treatment (SCS HEART study): First-in-man experience. Heart Rhythm 2015;12:588–95. https://doi.org/10.1016/j.hrthm.2014.12.014.
  42. Meng L, Tseng C-H, Shivkumar K, Ajijola O. Efficacy of Stellate Ganglion Blockade in Managing Electrical Storm. JACC: Clinical Electrophysiology 2017;3:942–9. https://doi.org/10.1016/j.jacep.2017.06.006.
  43. Fudim M, Boortz-Marx R, Ganesh A, et al. Stellate ganglion blockade for the treatment of refractory ventricular arrhythmias: A systematic review and meta-analysis. Cardiovasc Electrophysiol 2017;28:1460–7. https://doi.org/10.1111/jce.13324.
  44. Motazedian P, Quinn N, Wells GA, et al. Efficacy of stellate ganglion block in treatment of electrical storm: a systematic review and meta-analysis. Sci Rep. 2024 Oct 21;14(1):24719. https://doi.org/10.1038/j.hjc.2023.04.003.
  45. Assis FR, Sharma A, Shah R, et al. Long-Term Outcomes of Bilateral Cardiac Sympathetic Denervation for Refractory Ventricular Tachycardia. JACC: Clinical Electrophysiology 2021;7:463–70. https://doi.org/10.1016/j.jacep.2021.02.003.
  46. Vaseghi M, Barwad P, Malavassi Corrales FJ, et al. Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias. Journal of the American College of Cardiology 2017;69:3070–80. https://doi.org/10.1016/j.jacc.2017.04.035.
  47. Huang HD, Aksu T, Winterfield J. Neuromodulation for ventricular arrhythmias: progress-but are we there yet? J Interv Card Electrophysiol. 2025 Mar;68(2):379-380. https://doi.org/10.1007/s10840-024-01910-y
  48. Hawson J, Harmer JA, Cowan M, et al. Renal Denervation for the Management of Refractory Ventricular Arrhythmias. JACC: Clinical Electrophysiology 2021;7:100–8. https://doi.org/10.1016/j.jacep.2020.07.019.
  49. Zhang W, Zhou Q, Lu Y, et al. Renal Denervation Reduced Ventricular Arrhythmia After Myocardial Infarction by Inhibiting Sympathetic Activity and Remodeling. JAHA 2018;7:e009938. https://doi.org/10.1161/JAHA.118.009938.
  50. Ye J, Xiao R, Wang X, He R, Liu Z, Gao J. Effects and mechanism of renal denervation on ventricular arrhythmia after acute myocardial infarction in rats. BMC Cardiovasc Disord 2022;22:544. https://doi.org/10.1186/s12872-022-02980-4.
  51. Mehra R, Tjurmina OA, Ajijola OA, et al. Research Opportunities in Autonomic Neural Mechanisms of Cardiopulmonary Regulation. JACC: Basic to Translational Science 2022;7:265–93. https://doi.org/10.1016/j.jacbts.2021.11.003.
DOI: https://doi.org/10.2478/amma-2025-0040 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 268 - 275
Submitted on: Jul 27, 2025
Accepted on: Aug 26, 2025
Published on: Dec 11, 2025
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Ovidiu Șerban Marcu, Dan Alexandru Cozac, Alina Scridon, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.