Have a personal or library account? Click to login
Preliminary study to obtain some fluoroquinolonetetracycline hybrids Cover

Preliminary study to obtain some fluoroquinolonetetracycline hybrids

Open Access
|Dec 2024

References

  1. Nelson CA, Meaney-Delman D, Fleck-Derderian S, et al. Antimicrobial Treatment and Prophylaxis of Plague: Recommendations for Naturally Acquired Infections and Bioterrorism Response. MMWR Recomm Rep. 2021;70(3):1–27.
  2. Hsueh BY, Waters CM. Combating Cholera. F1000Res. 2019;8:F1000 Faculty Rev-589.
  3. Hospital-Acquired Complication - 3. Healthcare-Associated Infection fact sheet | Australian Commission on Safety and Quality in Health Care[date unknown]; [cited 2022 Jul 26 ] Available from: https://www.safetyandquality.gov.au/publications-and-resources/resource-library/hospital-acquired-complication-3-healthcare-associated-infection-fact-sheet.
  4. Global guidelines for the prevention of surgical site infection, 2nd ed.[date unknown]; [cited 2022 Mar 16 ] Available from: https://www.who.int/publications-detail-redirect/global-guidelines-for-the-prevention-of-surgical-site-infection-2nd-ed.
  5. Lesher GY, Froelich EJ, Gruett MD, Bailey JHays, Brundage RPauline. 1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents. J Med Chem. 1962;5(5):1063–5.
  6. Blondeau JM. Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv Ophthalmol. 2004;49 Suppl 2:S73-78.
  7. Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol. 2009;2(1):40–61.
  8. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565–74.
  9. Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? Journal of Medical Microbiology,. 2017;66(5):551–9. Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.000475.
  10. Tillotson GS. Quinolones: structure-activity relationships and future predictions. Journal of Medical Microbiology,. 1996;44(5):320–4. Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/00222615-44-5-320.
  11. Sharma PC, Jain A, Jain S. Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm. 2009;66(6):587–604.
  12. Rusu A, Tóth G, Szőcs L, et al. Triprotic site-specific acid–base equilibria and related properties of fluoroquinolone antibacterials. Journal of Pharmaceutical and Biomedical Analysis. 2012;66:50–7.
  13. Blokhina SV, Sharapova AV, Ol’khovich MV, Volkova TV, Perlovich GL. Solubility, lipophilicity and membrane permeability of some fluoroquinolone antimicrobials. European Journal of Pharmaceutical Sciences. 2016;93:29–37.
  14. Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules. 2021;26(23):7153.
  15. Rusu A, Lungu I-A, Moldovan O-L, Tanase C, Hancu G. Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones— Shaping the Fifth Generation. Pharmaceutics. 2021;13(8):1289.
  16. Fair RJ, Tor Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect Medicin Chem. 2014;6:25–64.
  17. Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules. 2020;25(23):5662.
  18. Horta P, Secrieru A, Coninckx A, Cristiano M. Quinolones for applications in medicinal chemistry: Synthesis and structure in Targets in Heterocyclic Systems - 2018, Chapter 11, pp 260-297. 2018. p. 260–97.
  19. Klein NC, Cunha BA. Tetracyclines. Medical Clinics of North America. 1995;79(4):789–801.
  20. Chopra I, Roberts M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol Mol Biol Rev. 2001;65(2):232–60.
  21. Chukwudi CU. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob Agents Chemother. 2016;60(8):4433–41.
  22. Singh S, Khanna D, Kalra S. Minocycline and Doxycycline: More Than Antibiotics. Curr Mol Pharmacol. 2021;14(6):1046–65.
  23. Elewa HF, Hilali H, Hess DC, Machado LS, Fagan SC. Minocycline for Acute Neuroprotection. Pharmacotherapy. 2006;26(4):515–21.
  24. Michaelis M, Kleinschmidt MC, Doerr HW, Cinatl J. Minocycline inhibits West Nile virus replication and apoptosis in human neuronal cells. J Antimicrob Chemother. 2007;60(5):981–6.
  25. Szeto GL, Brice AK, Yang H-C, Barber SA, Siliciano RF, Clements JE. Minocycline Attenuates HIV Infection and Reactivation by Suppressing Cellular Activation in Human CD4+ T Cells. J Infect Dis. 2010;201(8):1132–40.
  26. Dutta K, Basu A. Use of minocycline in viral infections. Indian J Med Res. 2011;133(5):467–70.
  27. Debrah AY, Mand S, Specht S, et al. Doxycycline Reduces Plasma VEGF-C/sVEGFR-3 and Improves Pathology in Lymphatic Filariasis. PLoS Pathog. 2006;2(9):e92.
  28. Scheinfeld N, Berk T. A review of the diagnosis and treatment of rosacea. Postgrad Med. 2010;122(1):139–43.
  29. Shutter MC, Akhondi H. Tetracycline. StatPearls. Treasure Island (FL): StatPearls Publishing; 2022 [cited 2023 Feb 12 ] Available from: http://www.ncbi.nlm.nih.gov/books/NBK549905/.
  30. LaPlante KL, Dhand A, Wright K, Lauterio M. Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance. Ann Med. 2022;54(1):1686–700.
  31. Khardori N, Stevaux C, Ripley K. Antibiotics: From the Beginning to the Future: Part 2. Indian J Pediatr. 2020;87(1):43–7.
  32. Domalaon R, Idowu T, Zhanel GG, Schweizer F. Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev. 2018;31(2):e00077-17.
  33. BIOVIA Draw 2021[date unknown]; Available from: https://www.3ds.com/products/biovia/draw.
  34. Sriram D, Yogeeswari P, Senchani G, Banerjee D. Newer tetracycline derivatives: Synthesis, anti-HIV, antimycobacterial activities and inhibition of HIV-1 integrase. Bioorganic & Medicinal Chemistry Letters. 2007;17(8):2372–5.
  35. Rusu A, Hancu G, Imre S. Essential Guide of Analysis Methods Applied to Silver Complexes with Antibacterial Quinolones. Adv Pharm Bull. 2018;8(2):181–9.
  36. Dorofeev VL, Arzamastsev AP, Veselova OM. Melting Point Determination for the Analysis of Drugs of the Fluoroquinolone Group. Pharmaceutical Chemistry Journal. 2004;38(6):333–5.
  37. Gupta NV, Shanmuganathan S, Kanna S, Sastri T. A 2^3 FACTORIAL DESIGN FOR FORMULATION AND DEVELOPMENT OF DOXYCYCLINE HYDROCHLORIDE IN SITU GEL FORMING SOLUTION FOR WOUND HEALING APPLICATION. International Journal of Applied Pharmaceutics. 2021;13:221–32.
  38. Sharifi A, Mirzaei M, Naimi-Jamal MR. A Facile Solvent-free Onepot Three-component Mannich Reaction of Aldehydes, Amines and Terminal Alkynes Catalysed by CuCl2. Journal of Chemical Research. 2007;2007(2):129–32.
DOI: https://doi.org/10.2478/amma-2024-0034 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 246 - 254
Submitted on: Aug 22, 2024
Accepted on: Oct 14, 2024
Published on: Dec 24, 2024
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Ioana-Andreea Lungu, Lénárd Farczádi, Zoltán-István Szabó, Șerban Andrei Gâz, Octavia-Laura Moldovan, Aura Rusu, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.