References
- Kole C, editor. Wild Crop Relatives: Genomic and Breeding Resources. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. [cited 2022 Aug 15 ] Available from: http://link.springer.com/10.1007/978-3-642-21250-5.
- Alejano R, Vázquez-Piqué J, Andivia E, et al. Dehesas: Open Woodland Forests of Quercus in Southwestern Spain. 2011. p. 87–119.
- Joshi AK, Juyal DD. Traditional and ethnobotanical uses of Quercus leucotrichophora A. Camus (Quercus oblongata D. Don) in Kumaun and Garhwal regions of Uttarakhand, India: A review. Int J Herb Med. [date unknown];3.
- Khennouf S, Amira S, Arrar L, Baghiani A. Effect of Some Phenolic Compounds and Quercus Tannins on Lipid Peroxidation. World Appl Sci J [Internet]. 2009;8.
- Mota S, Pinto C, Cravo S, et al. Quercus suber: A Promising Sustainable Raw Material for Cosmetic Application. Appl Sci. 2022;12(9):4604.
- Dróżdż P, Pyrzynska K. Assessment of polyphenol content and antioxidant activity of oak bark extracts. Eur J Wood Wood Prod. 2018;76(2):793–5.
- Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 2012;23(2):174–81.
- Forni C, Facchiano F, Bartoli M, et al. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. BioMed Res Int. 2019;2019:e8748253.
- Tanase C, Coșarcă S, Muntean D-L. A Critical Review of Phenolic Compounds Extracted from the Bark of Woody Vascular Plants and Their Potential Biological Activity. Molecules. 2019;24(6):1182.
- Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125(2):288–306.
- Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat Res Mol Mech Mutagen. 2005;579(1):200–13.
- Coman N-A, Babotă M, Nădășan I, et al. The Influence of Ecological Factors on the Phytochemical Characteristics of Pinus cembra L. Appl Sci. 2023;13(18):10184.
- Tanase C, Domokos E, Coșarcă S, et al. Study of the Ultrasound-assisted Extraction of Polyphenols from Beech (Fagus sylvatica L.) Bark. BioResources. 2018;13(2):2247–67.
- Tanase C, Babotă M, Nișca A, et al. Potential Use of Quercus dalechampii Ten. and Q. frainetto Ten. Barks Extracts as Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Agents. Pharmaceutics. 2023;15(2):343.
- Nisca A, Ștefănescu R, Moldovan C, et al. Optimization of Microwave Assisted Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant and Anti-Microbial Activity in Quercus cerris Bark Extracts. Plants. 2022;11(3):240.
- Santos Aleman R, Marcia Fuentes J, Montero Fernández I, et al. Effect of Microwave and Ultrasound-Assisted Extraction on the Phytochemical and In Vitro Biological Properties of Willow (Salix alba) Bark Aqueous and Ethanolic Extracts. Plants. 2023;12:2533.
- Bachtler S, Bart H-J. Increase the yield of bioactive compounds from elder bark and annatto seeds using ultrasound and microwave assisted extraction technologies. Food Bioprod Process. 2021;125:1–13.
- Ștefănescu R, Ciurea CN, Mare AD, et al. Quercus robur Older Bark—A Source of Polyphenolic Extracts with Biological Activities. Appl Sci. 2022;12(22):11738.
- O. Elansary H, Szopa A, Kubica P, et al. Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants. 2019;8(11):486.
- Unuofin JO, Lebelo SL. UHPLC-QToF-MS characterization of bioactive metabolites from Quercus robur L. grown in South Africa for antioxidant and antidiabetic properties. Arab J Chem. 2021;14(3):102970.
- Sen A, Miranda I, Esteves B, Pereira H. Chemical characterization, bioactive and fuel properties of waste cork and phloem fractions from Quercus cerris L. bark. Ind Crops Prod. 2020;157:112909.
- Shah P, Modi H. Comparative Study of DPPH, ABTS and FRAP Assays for Determination of Antioxidant Activity. 2015;
- Sari S, Barut B, Özel A, Kuruüzüm-Uz A, Șöhretoğlu D. Tyrosinase and α-glucosidase inhibitory potential of compounds isolated from Quercus coccifera bark: In vitro and in silico perspectives. Bioorganic Chem. 2019;86:296–304.
- Kim SB, Liu Q, Ahn JH, et al. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorganic Chem. 2018;81:127–33.
- Tanase C, Nicolescu A, Nisca A, et al. Biological Activity of Bark Extracts from Northern Red Oak (Quercus rubra L.): An Antioxidant, Antimicrobial and Enzymatic Inhibitory Evaluation. Plants. 2022;11(18):2357.
- Panzella L, Napolitano A. Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. Cosmetics. 2019;6(4):57.