Have a personal or library account? Click to login
Biological profiles of Q. cerris, Q. dalechampii, and Q. robur bark extracts: A characterization study Cover

Biological profiles of Q. cerris, Q. dalechampii, and Q. robur bark extracts: A characterization study

Open Access
|Apr 2024

References

  1. Kole C, editor. Wild Crop Relatives: Genomic and Breeding Resources. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. [cited 2022 Aug 15 ] Available from: http://link.springer.com/10.1007/978-3-642-21250-5.
  2. Alejano R, Vázquez-Piqué J, Andivia E, et al. Dehesas: Open Woodland Forests of Quercus in Southwestern Spain. 2011. p. 87–119.
  3. Joshi AK, Juyal DD. Traditional and ethnobotanical uses of Quercus leucotrichophora A. Camus (Quercus oblongata D. Don) in Kumaun and Garhwal regions of Uttarakhand, India: A review. Int J Herb Med. [date unknown];3.
  4. Khennouf S, Amira S, Arrar L, Baghiani A. Effect of Some Phenolic Compounds and Quercus Tannins on Lipid Peroxidation. World Appl Sci J [Internet]. 2009;8.
  5. Mota S, Pinto C, Cravo S, et al. Quercus suber: A Promising Sustainable Raw Material for Cosmetic Application. Appl Sci. 2022;12(9):4604.
  6. Dróżdż P, Pyrzynska K. Assessment of polyphenol content and antioxidant activity of oak bark extracts. Eur J Wood Wood Prod. 2018;76(2):793–5.
  7. Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 2012;23(2):174–81.
  8. Forni C, Facchiano F, Bartoli M, et al. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. BioMed Res Int. 2019;2019:e8748253.
  9. Tanase C, Coșarcă S, Muntean D-L. A Critical Review of Phenolic Compounds Extracted from the Bark of Woody Vascular Plants and Their Potential Biological Activity. Molecules. 2019;24(6):1182.
  10. Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125(2):288–306.
  11. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat Res Mol Mech Mutagen. 2005;579(1):200–13.
  12. Coman N-A, Babotă M, Nădășan I, et al. The Influence of Ecological Factors on the Phytochemical Characteristics of Pinus cembra L. Appl Sci. 2023;13(18):10184.
  13. Tanase C, Domokos E, Coșarcă S, et al. Study of the Ultrasound-assisted Extraction of Polyphenols from Beech (Fagus sylvatica L.) Bark. BioResources. 2018;13(2):2247–67.
  14. Tanase C, Babotă M, Nișca A, et al. Potential Use of Quercus dalechampii Ten. and Q. frainetto Ten. Barks Extracts as Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Agents. Pharmaceutics. 2023;15(2):343.
  15. Nisca A, Ștefănescu R, Moldovan C, et al. Optimization of Microwave Assisted Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant and Anti-Microbial Activity in Quercus cerris Bark Extracts. Plants. 2022;11(3):240.
  16. Santos Aleman R, Marcia Fuentes J, Montero Fernández I, et al. Effect of Microwave and Ultrasound-Assisted Extraction on the Phytochemical and In Vitro Biological Properties of Willow (Salix alba) Bark Aqueous and Ethanolic Extracts. Plants. 2023;12:2533.
  17. Bachtler S, Bart H-J. Increase the yield of bioactive compounds from elder bark and annatto seeds using ultrasound and microwave assisted extraction technologies. Food Bioprod Process. 2021;125:1–13.
  18. Ștefănescu R, Ciurea CN, Mare AD, et al. Quercus robur Older Bark—A Source of Polyphenolic Extracts with Biological Activities. Appl Sci. 2022;12(22):11738.
  19. O. Elansary H, Szopa A, Kubica P, et al. Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants. 2019;8(11):486.
  20. Unuofin JO, Lebelo SL. UHPLC-QToF-MS characterization of bioactive metabolites from Quercus robur L. grown in South Africa for antioxidant and antidiabetic properties. Arab J Chem. 2021;14(3):102970.
  21. Sen A, Miranda I, Esteves B, Pereira H. Chemical characterization, bioactive and fuel properties of waste cork and phloem fractions from Quercus cerris L. bark. Ind Crops Prod. 2020;157:112909.
  22. Shah P, Modi H. Comparative Study of DPPH, ABTS and FRAP Assays for Determination of Antioxidant Activity. 2015;
  23. Sari S, Barut B, Özel A, Kuruüzüm-Uz A, Șöhretoğlu D. Tyrosinase and α-glucosidase inhibitory potential of compounds isolated from Quercus coccifera bark: In vitro and in silico perspectives. Bioorganic Chem. 2019;86:296–304.
  24. Kim SB, Liu Q, Ahn JH, et al. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorganic Chem. 2018;81:127–33.
  25. Tanase C, Nicolescu A, Nisca A, et al. Biological Activity of Bark Extracts from Northern Red Oak (Quercus rubra L.): An Antioxidant, Antimicrobial and Enzymatic Inhibitory Evaluation. Plants. 2022;11(18):2357.
  26. Panzella L, Napolitano A. Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. Cosmetics. 2019;6(4):57.
DOI: https://doi.org/10.2478/amma-2024-0003 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 16 - 20
Submitted on: Oct 29, 2023
Accepted on: Feb 1, 2024
Published on: Apr 3, 2024
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Adrian Nisca, Sanziana Sisea, Nastaca Alina Coman, Mihai Babota, Oleg Frumuzachi, Corneliu Tanase, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.