Have a personal or library account? Click to login
Artificial intelligence based model for establishing the histopathological diagnostic of the cutaneous basal cell carcinoma Cover

Artificial intelligence based model for establishing the histopathological diagnostic of the cutaneous basal cell carcinoma

Open Access
|Jan 2023

References

  1. 1. Amisha, Malik P, Pathania M, Rathaur VK. Overview of AI in medicine. J Family Med Prim Care, 2019;8(7):2328-2331.10.4103/jfmpc.jfmpc_440_19669144431463251
  2. 2. Hamet P, Tremblay J. AI in medicine. Metabolism, 2017;69S:S36-S40.10.1016/j.metabol.2017.01.01128126242
  3. 3. Mayo RC, Leung J. AI and deep learning - Radiology’s next frontier? Clin Imaging, 2018;49:87-88.10.1016/j.clinimag.2017.11.007
  4. 4. Labovitz DL, Shafner L, Reyes Gil M, Virmani D, Hanina A. Using AI to Reduce the Risk of Nonadherence in Patients on Anticoagulation Therapy. Stroke, 2017;48(5):1416-1419.10.1161/STROKEAHA.116.016281543236928386037
  5. 5. Yu KH, Beam AL, Kohane IS. AI in healthcare. Nat Biomed Eng, 2018;2(10):719-731.10.1038/s41551-018-0305-z
  6. 6. Krittanawong C. The rise of AI and the uncertain future for physicians. Eur J Intern Med, 2018;48:e13-e14.10.1016/j.ejim.2017.06.01728651747
  7. 7. Cocuz IG, Cocuz ME, Niculescu R, et al. The Impact of and Adaptations Due to the COVID-19 Pandemic on the Histopathological Diagnosis of Skin Pathologies, Including Non-Melanocyte and Melanoma Skin Cancers-A Single-Center Study in Romania. Medicina (Kaunas), 2021;57(6):533.10.3390/medicina57060533822697934071770
  8. 8. Krittanawong C. Healthcare in the 21st century. Eur J Intern Med, 2017;38:e17.10.1016/j.ejim.2016.11.00227847141
  9. 9. Bi WL, Hosny A, Schabath MB, et al. AI in cancer imaging: Clinical challenges and applications. CA Cancer J Clin, 2019;69(2):127-157.10.3322/caac.21552
  10. 10. Liang M, Tang W, Xu DM, Jirapatnakul AC, Reeves AP, Henschke CI, Yankelevitz D. Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers. Radiology, 2016;281(1):279-88.10.1148/radiol.201615006327019363
  11. 11. Peris K, Fargnoli MC, Garbe C, et al. European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO) and the European Organization for Research and Treatment of Cancer (EORTC). Diagnosis and treatment of basal cell carcinoma: European consensus-based interdisciplinary guidelines. Eur J Cancer, 2019;118:10-34.10.1016/j.ejca.2019.06.00331288208
  12. 12. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of AI technologies in medicine. Nat Med, 2019;25(1):30-36.10.1038/s41591-018-0307-0699527630617336
  13. 13. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of AI in medicine. Wiley Interdiscip Rev Data Min Knowl Discov, 2019;9(4):e1312.10.1002/widm.1312701786032089788
  14. 14. Försch S, Klauschen F, Hufnagl P, Roth W. AI in Pathology. Dtsch Arztebl Int, 2021;118(12):194-204.
  15. 15. Matheny ME, Whicher D, Thadaney Israni S. AI in Health Care: A Report From the National Academy of Medicine. JAMA, 2020;323(6):509-510.10.1001/jama.2019.2157931845963
  16. 16. Liu F, Zhou Z, Samsonov A, et al. Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection. Radiology, 2018;289(1):160-169.10.1148/radiol.2018172986616686730063195
  17. 17. Bartels R, Dudink J, Haitjema S, Oberski D, van’t Veen A. A Perspective on a Quality Management System for AI/ML-Based Clinical Decision Support in Hospital Care. Front Digit Health, 2022;4:942588.10.3389/fdgth.2022.942588929942535873347
  18. 18. Parwani AV. Next generation diagnostic pathology: use of digital pathology and AI tools to augment a pathological diagnosis. Diagn Pathol, 2019;14(1):138.10.1186/s13000-019-0921-2693373331881972
  19. 19. Mandong BM. Diagnostic oncology: role of the pathologist in surgical oncology--a review article. Afr J Med Med Sci, 2009;38 Suppl 2:81-8.
  20. 20. Amin W, Srintrapun SJ, Parwani AV. Automated whole slide imaging. Expert Opin Med Diagn, 2008;2(10):1173-81.10.1517/17530059.2.10.117323496426
  21. 21. Chen PC, Gadepalli K, MacDonald R, et al. An augmented reality microscope with real-time AI integration for cancer diagnosis. Nat Med, 2019;25(9):1453-1457.10.1038/s41591-019-0539-731406351
  22. 22. Elmore JG, Longton GM, Carney PA, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA, 2015;313(11):1122-32.10.1001/jama.2015.1405451638825781441
  23. 23. Brimo F, Schultz L, Epstein JI. The value of mandatory second opinion pathology review of prostate needle biopsy interpretation before radical prostatectomy. J Urol, 184(1):126-30.10.1016/j.juro.2010.03.02120478583
  24. 24. Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med, 2019; 25(8):1301-1309.10.1038/s41591-019-0508-1741846331308507
  25. 25. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. AI in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol, 2019;16(11):703-715.10.1038/s41571-019-0252-y688086131399699
DOI: https://doi.org/10.2478/amma-2022-0020 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 164 - 171
Submitted on: Aug 8, 2022
|
Accepted on: Sep 2, 2022
|
Published on: Jan 7, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Andrei Calin Dragomir, Iuliu Gabriel Cocuz, Ovidiu Simion Cotoi, Leonard Azamfirei, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.