Have a personal or library account? Click to login
Protein level alteration of endocannabinoid system components after chronic, oral self-administration of three atypical antipsychotics in rat Cover

Protein level alteration of endocannabinoid system components after chronic, oral self-administration of three atypical antipsychotics in rat

Open Access
|Apr 2021

References

  1. 1 Stahl SM. Atypical antipsychotics. Stahl's Essent. Psychopharmacol. Neurosci. Basis Pract. Appl.,. 4`thCambridge: Cambridge University Press, 2013:141–169.
  2. 2 Solmi M, Murru A, Pacchiarotti I, et al. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-ofthe-art clinical review. Ther Clin Risk Manag. 2017;13:757–777.10.2147/TCRM.S117321549979028721057
  3. 3 Kun IZ, Szántó Z, Kun I, et al. Konvencionális és atípusos antipszichotikumok okozta metabolikus szindróma. Orvostudományi Értesítő. 2017;90:7–18.
  4. 4 Citrome L. The ABC’s of dopamine receptor partial agonists - Aripiprazole, brexpiprazole and cariprazine: The 15-min challenge to sort these agents out. Int J Clin Pract. 2015;69:1211–1220.10.1111/ijcp.1275226477545
  5. 5 Zimnisky R, Chang G, Gyertyán I, et al. Cariprazine, a dopamine D3-receptor-preferring partial agonist, blocks phencyclidine-induced impairments of working memory, attention set-shifting, and recognition memory in the mouse. Psychopharmacology (Berl). 2013;226:91–100.10.1007/s00213-012-2896-5357227323079899
  6. 6 Corponi F, Fabbri C, Bitter I, et al. Novel antipsychotics specificity profile: A clinically oriented review of lurasidone, brexpiprazole, cariprazine and lumateperone. Eur Neuropsychopharmacol. 2019;29:971–985.10.1016/j.euroneuro.2019.06.00831255396
  7. 7 Nasrallah HA. Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry. 2008;13:27–35.10.1038/sj.mp.400206617848919
  8. 8 Horn H, Böhme B, Dietrich L, et al. Endocannabinoids in body weight control. Pharmaceuticals. 2018;11:1–48.10.3390/ph11020055602716229849009
  9. 9 Bába L-I, Kolcsár M, Hack B, et al. Az endokannabinoid rendszer: receptoroktól a terápiáig (The endocannabinoid system: from the receptors to therapy). Orvostudományi Értesítő. 2019;92:1–14.
  10. 10 Pertwee RG, Howlett a C, Abood ME, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands : Beyond CB 1 and CB 2. Pharmacol Rev. 2010;62:588–631.10.1124/pr.110.003004299325621079038
  11. 11 Lu HC, MacKie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79:516–525.10.1016/j.biopsych.2015.07.028478913626698193
  12. 12 Faah - Fatty-acid amide hydrolase 1 - Rattus norvegicus (Rat) - Faah gene & protein. Available at https://www.uniprot.org/uniprot/P97612 Accessed August 21, 2020.
  13. 13 Mgll - Monoglyceride lipase - Rattus norvegicus (Rat) - Mgll gene & protein. Available at https://www.uniprot.org/uniprot/Q8R431 Accessed August 21, 2020.
  14. 14 Matias I, Belluomo I, Cota D. The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis Cannabinoid Res. 2016;1:176–185.10.1089/can.2016.0014
  15. 15 Gasperi V, Fezza F, Pasquariello N, et al. Endocannabinoids in adipocytes during differentiation and their role in glucose uptake. Cell Mol Life Sci. 2007;64:219–229.10.1007/s00018-006-6445-417187172
  16. 16 Perwitz N, Fasshauer M, Klein J. Cannabinoid receptor signaling directly inhibits thermogenesis and alters expression of adiponectin and visfatin. Horm Metab Res. 2006;38:356–358.10.1055/s-2006-92540116718635
  17. 17 Lazzari P, Serra V, Marcello S, et al. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur Neuropsychopharmacol. 2017;27:1–12.10.1016/j.euroneuro.2017.03.01028377074
  18. 18 Liebig M, Gossel M, Pratt J, et al. Profiling of energy metabolism in olanzapine-induced weight gain in rats and its prevention by the CB1-antagonist AVE1625. Obesity (Silver Spring). 2010;18:1952–1958.10.1038/oby.2010.1720168311
  19. 19 Minet-Ringuet J, Even PC, Valet P, et al. Alterations of lipid metabolism and gene expression in rat adipocytes during chronic olanzapine treatment. Mol Psychiatry. 2007;12:562–571.10.1038/sj.mp.400194817211438
  20. 20 Bába L-I, Gáll Z, Kolcsár M, et al. Effect on Body Weight and Adipose Tissue by Cariprazine : A Head-to-Head Comparison Study to Olanzapine and Aripiprazole in Rats. Sci Pharm. 2020;88:1–14.10.3390/scipharm88040050
  21. 21 Weston-Green K, Huang XF, Deng C. Olanzapine treatment and metabolic dysfunction: A dose response study in female Sprague Dawley rats. Behav Brain Res. 2011;217:337–346.10.1016/j.bbr.2010.10.03921056063
  22. 22 De Santis M, Pan B, Lian J, et al. Different effects of Bifeprunox, Aripiprazole, and Haloperidol on body weight gain, food and water intake, and locomotor activity in rats. Pharmacol Biochem Behav. 2014;124:167–173.10.1016/j.pbb.2014.06.00424933333
  23. 23 Watson DJG, King M V., Gyertyán I, et al. The dopamine D3-preferring D2/D3 dopamine receptor partial agonist, cariprazine, reverses behavioural changes in a rat neurodevelopmental model for schizophrenia. Eur Neuropsychopharmacol. 2016;26:208–224.10.1016/j.euroneuro.2015.12.02026723167
  24. 24 Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–661.10.1096/fj.07-9574LSF17942826
  25. 25 Eaton SL, Roche SL, Llavero Hurtado M, et al. Total Protein Analysis as a Reliable Loading Control for Quantitative Fluorescent Western Blotting. PLoS One. 2013;8:1–9.10.1371/journal.pone.0072457375829924023619
  26. 26 Moritz CP. Tubulin or Not Tubulin: Heading Toward Total Protein Staining as Loading Control in Western Blots. Proteomics. 2017;17:1–12.10.1002/pmic.20160018928941183
  27. 27 Welinder C, Ekblad L. Coomassie staining as loading control in Western blot analysis. J Proteome Res. 2011;10:1416–1419.10.1021/pr101147621186791
  28. 28 Skrede S, Martins L, Berge RK, et al. Olanzapine depot formulation in rat: A step forward in modelling antipsychotic-induced metabolic adverse effects. Int J Neuropsychopharmacol. 2014;17:91–104.10.1017/S146114571300086223919889
  29. 29 Weston-Green K, Huang XF, Deng C. Alterations to melanocortinergic, gabaergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain. PLoS One. 2012;7:1–12.10.1371/journal.pone.0033548330641122438946
  30. 30 Nisoli E. Endocannabinoids and obesity development - The adipose tissue. Drug Discov Today Dis Mech. 2010;7:e199–e204.10.1016/j.ddmec.2010.12.002
  31. 31 Engeli S, Böhnke J, Feldpausch M, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes. 2005;54:2838–2843.10.2337/diabetes.54.10.2838222826816186383
  32. 32 Tam J, Godlewski G, Earley BJ, et al. Role of adiponectin in the metabolic effects of cannabinoid type 1 receptor blockade in mice with diet-induced obesity. Am J Physiol - Endocrinol Metab. 2014;306:E457-468.10.1152/ajpendo.00489.2013392309024381003
  33. 33 Hu Y, Young AJ, Ehli E a., et al. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One. 2014;9:1–9.
  34. 34 Skrede S, Fernø J, Vázquez MJ, et al. Olanzapine, but not aripiprazole, weight-independently elevates serum triglycerides and activates lipogenic gene expression in female rats. Int J Neuropsychopharmacol. 2012;15:163–179.10.1017/S146114571100127121854679
  35. 35 André A, Gonthier MP. The endocannabinoid system: Its roles in energy balance and potential as a target for obesity treatment. Int J Biochem Cell Biol. 2010;42:1788–1801.10.1016/j.biocel.2010.06.00220541029
  36. 36 Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci. 2019;76:1341–1363.10.1007/s00018-018-2994-630599065
  37. 37 Kale VP, Gibbs S, Taylor JA, et al. Preclinical toxicity evaluation of JD5037, a peripherally restricted CB1 receptor inverse agonist, in rats and dogs for treatment of nonalcoholic steatohepatitis. Regul Toxicol Pharmacol. 2019;109:1044983.
  38. 38 Barutta F, Bellini S, Mastrocola R, et al. Reversal of albuminuria by combined AM6545 and perindopril therapy in experimental diabetic nephropathy. Br J Pharmacol. 2018;175:4371–4385.10.1111/bph.14495624013030184259
  39. 39 Tan S, Liu H, Ke B, et al. The peripheral CB1 receptor antagonist JD5037 attenuates liver fibrosis via a CB1 receptor/β-arrestin1/Akt pathway. Br J Pharmacol. 2020;177:2830–2847.10.1111/bph.15010723606832017042
DOI: https://doi.org/10.2478/amma-2021-0008 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 60 - 66
Submitted on: Dec 16, 2020
Accepted on: Feb 12, 2021
Published on: Apr 6, 2021
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 László-István Bába, Melinda Kolcsár, Zsolt Gáll, László Csaba Bencze, Adrian Man, Imre Zoltán Kun, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution 4.0 License.