References
- 1. Moldovan F, Bățagă T. Optimization of surgical bone drilling processes in repairing complete bone fractures. Acata Medica Marisiensis. 2019;65(1):30.
- 2. Hosseini-Suny K, Momeni H, Janabi-Sharifi F. A Modified adaptive controller design for teleoperation systems. Robotics and Autonomous Systems. 2010;58:676–683.10.1016/j.robot.2009.11.006
- 3. Unger B, Sepehri N, Rampersad V, Pisa J, Gousseau M, Hochman JB. Elements of virtual temporal bone surgery: Manipulandum format may be more important to surgeons than haptic device force capabilities. Laryngoscope Investig Otolaryngol. 2017;2(6):358–362.10.1002/lio2.120574316729299508
- 4. Lévesque L, Noël JM, Scott C. Controlling the temperature of bones using pulsed CO2 lasers: observations and mathematical modeling. Biomed Opt Express. 2015;6(12):4768–4780.10.1364/BOE.6.004768467925226713192
- 5. Feldmann A, Wandel J, Zysset P. Reducing temperature elevation of robotic bone drilling. Med Eng Phys. 2016;38(12):1495-150410.1016/j.medengphy.2016.10.00127789226
- 6. Feldmann A, Maquer W, Zysset P. The thermal conductivity of cortical and cancellous bone. European Cells and Materials. 2018;35:25-33.10.22203/eCM.v035a0329376217
- 7. Livingston A, Wang T, Christou C, Pelletier MH, Walsh WR. The Effect of saline coolant on temperature levels during decortication with a midas rex: an in vitro model using sheep cervical vertebrae. Front Surg. 2015;2:37.10.3389/fsurg.2015.00037452110026284253
- 8. Tu YK, Chen LW, Ciou JS, Hsiao CK, Chen YC. Finite element simulations of bone temperature rise during bone drilling based on a bone analog. J Med Biol Eng. 2012;33(3):269-274.
- 9. Ozdoganlar OB, DeVor RE, Kapoor SG. Modeling chip-evacuation forces and prediction of chip-clogging in drilling. J Manuf Sci Eng. 2002;124:605-614.10.1115/1.1473146
- 10. Bertollo N, Walsh WR. Drilling of bone: practicality, limitations and complications associated with surgical drill-bits, in Vaclav Klika (eds): IntechOpen, London, UK, 2011, 53-82.10.5772/20931
- 11. Lee JE, Rabin Y, Ozdoganlar OB. A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys. 2011;33:1234–1244.10.1016/j.medengphy.2011.05.01421803638
- 12. Zdero R, Tsuji MRS, Crookshank MC. Experimental methods in orthopaedic biomechanics, in Zdero R (eds): Academic Press, Elsevier, London, UK, 2017, 101-116.10.1016/B978-0-12-803802-4.00007-X
- 13. Hou Y, Li C, Ma H, Zhang Y, Yang M Zhang X. An Experimental research on bone drilling temperature in orthopaedic surgery. The Open Materials Science Journal. 2015;9:178-188.10.2174/1874088X01509010178
- 14. Pandey RK, Panda SS. Drilling of bone: a comprehensive review. J Clin Orthop Trauma. 2013;4(1):15-30.10.1016/j.jcot.2013.01.002
- 15. Boiadjiev G, Delchev K, Boiadjiev T, Zagurski T, Kastelov R, Vitkov V. Temperature reduction by controlled trust force during automatic bone drilling in the orthopedic surgery. 12th National Congress on Theoretical and Applied Mechanics, Varna Bulgaria, 2013, On-line available at: http://nctam.imbm.bas.bg/index.php/nctam/12nctam/paper/viewFile/514/14410.12732/ijpam.v88i4.12
- 16. Alam K. Experimental measurements of temperatures in drilling cortical bone using thermocouples. Scientia Iranica B. 2015;22(2):487-492.
- 17. Siljander BR, Wang AC, Zhang L, Shih AJ, Sullivan SE, Tai BL. Cool mist irrigation improves heat dissipation during surgical bone drilling. J Neurol Surg B Skull Base. 2014;75(4):243–246.10.1055/s-0034-1368098
- 18. Augustin G, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop. 2012;36(7):1449–1456.10.1007/s00264-012-1491-z
- 19. Palmisano AC, Tai BL, Belmont B, Irwin TA, Shih A, Holmes JR. Heat accumulation during sequential cortical bone drilling. J Orthop Res. 2016;34:463-470.10.1002/jor.23044
- 20. Hillery MT, Shuaib I. Temperature effects in the drilling of human and bovine bone. Journal of Materials Processing Technology. 1999;92-9:302-308.10.1016/S0924-0136(99)00155-7