Have a personal or library account? Click to login
Spleen Derived Immune Cells in Acute Ischemic Brain Injury: A Short Review Cover

Spleen Derived Immune Cells in Acute Ischemic Brain Injury: A Short Review

By: Emőke Horváth and  Éva Kiss  
Open Access
|Dec 2019

References

  1. 1. The World Health Organization (WHO) updates fact sheet on Top 10 causes of Death, https://communitymedicine4asses.wordpress.com/2017/02/01/who-updates-fact-sheet-on-top-10-causes-of-death-27-january-2017
  2. 2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA – Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 2014; 383(9913):245-25410.1016/S0140-6736(13)61953-4
  3. 3. Alves JE, Carneiro A, Xavier J –Reliability of CT perfusion in the evaluation of the ischaemic penumbra. Neuroradiol J 2014; 27(1):91-9510.15274/NRJ-2014-10010420284924571838
  4. 4. Fluri F, Schuhmann MK, Kleinschnitz C – Animal models of ischemic stroke and their application in clinical research. Drug Des. Devel. Ther. 2015; 9:3445-3454
  5. 5. Fuhrer H, Günther A, Zinke J – Optimizing cardiac output to increase cerebral penumbral perfusion in large middle cerebral artery ischemic lesion-OPTIMAL study. Front Neurol. 2017; 8:40210.3389/fneur.2017.00402555412728848494
  6. 6. Rasouli J, Lekhraj R, Ozbalik M, Lalezari P, Casper D – Brain-spleen inflammatory coupling: a literature review. Einstein J Biol Med. 2011; 27(2):74-77
  7. 7. Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, et al – Ischemic stroke activates hematopoietic bone marrow cells. Circ Res. 2015 Jan;116(3):407-1710.1161/CIRCRESAHA.116.305207431251125362208
  8. 8. Schwartz-Bloom RD, Sah R – gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem. 2001; 77(2):353-71
  9. 9. Mele M, Costa RO, Duarte CB – Alterations in GABAA-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front Cell Neurosci. 2019; 13:7710.3389/fncel.2019.00077641622330899215
  10. 10. Gelderblom M, Leypoldt F, Steinbach K, et al. – Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 2009; 40(5):1849-185710.1161/STROKEAHA.108.53450319265055
  11. 11. Jin R, Yang G, Li G – Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010; 87(5):779-78910.1189/jlb.1109766285867420130219
  12. 12. Liu ZJ, Chen C, Li FW, et al – Splenic response in ischemic stroke: new insights into stroke pathology. CNS Neurosci Ther. 2015; 21(4):320-32610.1111/cns.12361649527925475834
  13. 13. Kim E, Yang J, Beltran CD, Cho S – Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. J Cereb Blood Flow Metab. 2014; 34:1411–141910.1038/jcbfm.2014.101412608724865998
  14. 14. Yan FL, Zhang JH – Role of the Sympathetic Nervous System and Spleen in Experimental Stroke-Induced Immunodepression. Med Sci Monit. 2014; 20:2489-249610.12659/MSM.890844426062025434807
  15. 15. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD – Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006; 26(5):654-6510.1038/sj.jcbfm.960021716121126
  16. 16. Amantea D, Certo M, Petrelli F, Bagetta G –Neuroprotective Properties of Macrolide Antibiotic in Mouse Model of Middle Cerebral Artery Occlusion: Characterization of the Immunomodulatory Effects and Validation of the Efficacy of Intravenous Administration. Assay Drug Dev Technol. 2016 ;14(5):298-30710.1089/adt.2016.728496049427392039
  17. 17. Certo M, Endo Y, Ohta K, Sakurada S, Bagetta G, Amantea D – Activation of RXR/PPAR gamma underlines neuroprotection by bexarotene in ischemic stroke. Pharmacol Res. 2015; 102:298-30710.1016/j.phrs.2015.10.00926546745
  18. 18. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR – A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol. 2012; 7(4):1017–102410.1007/s11481-012-9406-8351857723054371
  19. 19. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Annals of neurology. 2013;74(3):458–7110.1002/ana.23815374816523674483
  20. 20. Noble BT, Brennan FH, Popovich PG – The spleen as a neuroimmune interface after spinal cord injury. J. Neuroimmunol. 2018; 321:1–1110.1016/j.jneuroim.2018.05.00729957379
  21. 21. Cesta MF – Normal structure, function, and Histology of the spleen. Toxicol Pathol. 2006; 34:455-46510.1080/0192623060086774317067939
  22. 22. Steiniger BS – Human spleen microanatomy: why mice do not suffice. Immunology 2015; 145: 334–34610.1111/imm.12469447953325827019
  23. 23. Vahidy FS, Parsha KN, Rahbar MH, et al. – Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. J Cereb Blood Flow Metab. 2016; 36(6):1012-102110.1177/0271678X15607880490862026661179
  24. 24. Pennypacker KR, Offner H – The role of the spleen in ischemic stroke. J Cereb Blood Flow Metab. 2015; 35(2):186-710.1038/jcbfm.2014.212442675425465042
  25. 25. Okuaki Y, Miyazaki H, Zeniya M, et al. – Splenectomy-reduced hepatic injury induced by ischemia/reperfusion in the rat. Liver. 1996; 16(3):188-19410.1111/j.1600-0676.1996.tb00726.x
  26. 26. Savas MC, Ozguner M, Ozguner IF, Delibas N – Splenectomy attenuates intestinal ischemia-reperfusion-induced acute lung injury. J Pediatr Surg. 2003; 38(10):1465-147010.1016/S0022-3468(03)00497-4
  27. 27. Leuschner F, Panizzi P, Chico-Calero I, et al – Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res. 2010;107(11):1364-137310.1161/CIRCRESAHA.110.227454299210420930148
  28. 28. Hurn PD, Subramanian S, Parker SM, – T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Bood Flow Metab. 2007; 27(11):1798-180510.1038/sj.jcbfm.9600482259268917392692
  29. 29. Offner H, Subramanian S, Parker SM, et al. – Splenic atrophy in experimental stroke is accompanied by increased regulatory T Cells and circulating macrophages. J Immunol. 2006; 176:6523-653110.4049/jimmunol.176.11.652316709809
  30. 30. Kriz J – 2006. Inflammation in ischemic brain injury: timing is important. Crit. Rev. Neurobiol. 2006; 18(1-2):145-15710.1615/CritRevNeurobiol.v18.i1-2.15017725517
  31. 31. Ceulemans AG, Zgavc T, Kooijman R, Hachimi-Idrissi S, Sarre S, Michotte Y – The dual role of the neuroinflammatory response after ischemic stroke: modulatory effects of hypothermia. J Neuroinflammation. 2010; 1(7):74
  32. 32. Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab. 2015 Jun;35(6):888-90110.1038/jcbfm.2015.45464025525806703
  33. 33. Justicia C, Panes J, Sole S, Cervera A, Deulofeu R, Chamorro A, Planas AM. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab. 2003; 23: 1430–144010.1097/01.WCB.0000090680.07515.C814663338
  34. 34. Rivera S, Ogier C, Jourquin J, Timsit S, Szklarczyk AW, Miller K, Gearing AJ, Kaczmarek L, Khrestchatisky M. Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur J Neurosci. 2002; 15: 19–3210.1046/j.0953-816x.2001.01838.x11860503
  35. 35. Montaner J, Alvarez-Sabin J, Molina C, Angles A, Abilleira S, Arenillas J, Gonzalez MA, Monasterio J. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. 2001; 32: 1759–176610.1161/01.STR.32.8.175911486102
  36. 36. Rosell A, Ortega-Aznar A, Alvarez-Sabin, J, et al. – Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 2006; 37:1399-140610.1161/01.STR.0000223001.06264.af
  37. 37. Yang Y, Rosenberg GA – Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015; 1623:30-3810.1016/j.brainres.2015.04.024
  38. 38. Ajmo CT Jr, Collier LA, Leonardo CC et al. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol. 2009;218(1):47–5510.1016/j.expneurol.2009.03.044
  39. 39. Zhang HT, Zhang P, Gao Y, et al. – Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol. Med. Rep. 2017; 15:57-64
  40. 40. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV – Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011; 6(1):1110.1186/1750-1326-6-11
  41. 41. Yilmaz G, Arumugam T V, Stokes K Y, Granger D N. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation. 2006; 113:2105–2112.10.1161/CIRCULATIONAHA.105.593046
  42. 42. Hurn P D, Subramanian S, Parker S M, Afentoulis M E, Kaler L J, Vandenbark A A, Offner H. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007; 27:1798–180510.1038/sj.jcbfm.9600482
  43. 43. Prass K, Meisel C, Höflich C Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation.J Exp Med. 2003 Sep 1;198(5):725-3610.1084/jem.20021098
  44. 44. Shi K, Wood K, Shi FD, Wang X, Liu Q. Stroke-induced immunosuppression and poststroke infection.Stroke Vasc Neurol. 2018 Jan 12;3(1):34-41.10.1136/svn-2017-000123
  45. 45. Arumugam T V, Granger D N, Mattson M P. Stroke and T-cells. Neuromolecular Med. 2005; 7:229–242.10.1385/NMM:7:3:229
  46. 46. Dotson AL, Zhu W, Libal N, Alkayed NJ, Offner H. Different immunological mechanisms govern protection from experimental stroke in young and older mice with recombinant TCR ligand therapy. Front Cell Neurosci. 2014; 8:284.10.3389/fncel.2014.00284417476825309326
  47. 47. Planas AM, Gómez-Choco M, Urra X, Gorina R, Caballero M, Chamorro Á – Brain-derived antigens in lymphoid tissue of patients with acute stroke. J Immunol. 2012; 188:2156-216310.4049/jimmunol.110228922287710
  48. 48. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Annals of neurology. 2013;74(3):458–71.10.1002/ana.23815374816523674483
  49. 49. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–19910.1038/nm.192719169263
  50. 50. Kleinschnitz C, Kraft P, Dreykluft A, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–691.10.1182/blood-2012-04-426734379094723160472
  51. 51. Xia Y, Cai W, Thomson AW, Hu X. Regulatory T Cell Therapy for Ischemic Stroke: how far from Clinical Translation? Transl Stroke Res. 2016;7(5):415-9
  52. 52. Offner H, Subramanian S, Parker SM, et al. – Splenic atrophy in experimental stroke is accompanied by increased regulatory T Cells and circulating macrophages. J Immunol. 2006; 176:6523-653110.4049/jimmunol.176.11.652316709809
  53. 53. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua D J, Iwakura Y, Yoshimura A. Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat Med. 2009; 15:946–95010.1038/nm.199919648929
  54. 54. Chen C, Jiang W, Liu Z, et al. – Splenic responses play an important role in remote ischemic preconditioning-mediated neuroprotection against stroke. J Neuroinflammation. 2018;15(1):16710.1186/s12974-018-1190-9597244829807548
  55. 55. Rehg JE, Bush D, Ward M – The utility of immunohistochemistry for the identification of hematopoietic and lymphoid cells in normal tissue and interpretation of proliferative and inflammatory lesions of mice and rats. Toxicologic Pathology 2012; 40:345-37410.1177/019262331143069522434870
  56. 56. Chen Y, Bodhankar S, Murphy SJ, Vandenbark AA, Alkayed NJ, Offner H. Intrastriatal B-cell administration limits infarct size after stroke in B-cell deficient mice. Metab Brain Dis. 2012; 27:487–49310.1007/s11011-012-9317-7342771522618587
  57. 57. Offner H, Hurn PD. A novel hypothesis: regulatory B lymphocytes shape outcome from experimental stroke. Transl Stroke Res. 2012; 3:324–33010.1007/s12975-012-0187-4350127223175646
  58. 58. Schuhmann MK, Langhauser F, Kraft P, Kleinschnitz C – B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J Neuroinflammation. 2017; 14:11210.1186/s12974-017-0890-x545773328576128
  59. 59. Doyle KP, Quach LN, Solé M, et al. – B-lymphocyte-mediated delayed cognitive impairment following stroke. J Neurosci 2015; 35(5):2133-214510.1523/JNEUROSCI.4098-14.2015431583825653369
  60. 60. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H – Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice Metab Brain Dis. 2014; 29(1):59-7310.1007/s11011-013-9474-3394405524374817
  61. 61. Seifert HA, Leonardo CC, Hall AA et al. –The spleen contributes to stroke induced neurodegeneration through interferon gammasignaling. Metab Brain Dis. 2012; 27(2):131-141.10.1007/s11011-012-9283-0473973622354752
  62. 62. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA – Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):14210.1186/s12974-019-1516-2661768431291966
  63. 63. Amantea D. Polarizing the immune system towards neuroprotection in brain ischemia. Neural Regen Res (2016); 11(1):81-8210.4103/1673-5374.169633477423726981089
  64. 64. Bao Y, Kim E, Bhosle S, Mehta H, Cho S – A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflammation. 2010; 7:9210.1186/1742-2094-7-92301627321159187
  65. 65. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG – The ischemic environment drives microglia and macrophage function. Front Neurol. 2015; 6: e8110.3389/fneur.2015.00081438940425904895
  66. 66. Kawabori M., Kacimi R., Kauppinen T., Calosing C., Kim J.Y., Hsieh C.L., Nakamura M.C., Yenari M.A. Ttriggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 2015; 35:3384–339610.1523/JNEUROSCI.2620-14.2015433935125716838
  67. 67. Nakagawa Y, Chiba K. – Role of microglial M1/M2 polarisation in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 2014; 7(12): 1028-104810.3390/ph7121028427690525429645
  68. 68. Chiba, T, Umegaki, K –2013. Pivotal Roles of Monocytes/Macrophages in Stroke. Mediators Inflamm. 2013, 75910310.1155/2013/759103356888923431245
  69. 69. Kanazawa, M., Ninomiya, I., Hatakeyama, M., Takahashi, T., Shimohata, T., 2017. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci.18(10), E 213510.3390/ijms18102135566681729027964
  70. 70. Horváth E, Huțanu A, Chiriac L, Dobreanu M, Orãdan A, Nagy EE – Ischemic damage and early inflammatory infiltration are different in the core and penumbra lesions of rat brain after transient focal cerebral ischemia. J Neuroimmunol. 2018; 324:35-4210.1016/j.jneuroim.2018.08.00230212790
DOI: https://doi.org/10.2478/amma-2019-0025 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 129 - 134
Submitted on: Sep 3, 2019
Accepted on: Nov 5, 2019
Published on: Dec 31, 2019
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Emőke Horváth, Éva Kiss, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.