Have a personal or library account? Click to login
MTHFR - Ala222Val Effects on Metabolic Syndrome Progression Cover

MTHFR - Ala222Val Effects on Metabolic Syndrome Progression

Open Access
|Jul 2018

References

  1. 1. Russo GT, Di Benedetto A, Alessi E, et al. Mild hyperhomocysteinemia and the common C677T polymorphism of methylene tetrahydrofolatereductase gene are not associated with the metabolic syndrome in Type 2 diabetes. J Endocrinol Invest. 2006; 29(3):201-207.10.1007/BF0334554016682831
  2. 2. Chen AR, Zhang HG, Wang ZP, et al. C-reactive protein, vitamin B12 and C677T polymorphism of N-5,10-methylenetetrahydrofolate reductase gene are related to insulin resistance and risk factors for metabolic syndrome in Chinese population. Clin Invest Med. 2010; 33(5):E290-7.10.25011/cim.v33i5.1435420926035
  3. 3. Veeranki S, Givvimani S, Pushpakumar S, Tyagi SC. Hyperhomocysteinemia attenuates angiogenesis through reduction of hif-1alpha and pgc-1alpha levels in muscle fibers during hindlimb ischemia. Am J Physiol Heart Circ Physiol 2014;306:H1116–H1127.10.1152/ajpheart.00003.2014398975224585779
  4. 4. Pooya S, Blaise S, Moreno Garcia M, et al. Methyl donor deficiency impairs fatty acid oxidation through PGC-1α hypomethylation and decreased ER-α, ERR-α, and HNF-4α in the rat liver. J Hepatol 2012;57:344-351.10.1016/j.jhep.2012.03.02822521344
  5. 5. SNPedia - rs1801133. https://www.snpedia.com/index.php/Rs1801133
  6. 6. Rai V. Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and Alzheimer Disease Risk: a Meta-Analysis. Mol Neurobiol 2017;54(2):1173-1186.10.1007/s12035-016-9722-826820674
  7. 7. Devlin AM, Ngai YF, Ronsley R, Panagiotopoulos C. Cardiometabolic risk and the MTHFR C677T variant in children treated with second-generation antipsychotics. Transl Psychiatry. 2012; 24;2:e71.10.1038/tp.2011.68330953822832733
  8. 8. Cordain L, Hickey MS. Ultraviolet radiation represents an evolutionary selective pressure for the south-to-north gradient of the MTHFR 677TT genotype. Am J Clin Nutr. 2006; 84(5):1243.10.1093/ajcn/84.5.124317093181
  9. 9. Trovato FM, Catalano D, Ragusa A, et al. Relationship of MTHFR gene polymorphisms with renal and cardiac disease. World J Nephrol. 2015; 4(1):127-13710.5527/wjn.v4.i1.127431762325664255
  10. 10. Csép K, Todoran Butilă A, Bănescu C, Szigeti E. MTHFR – C677T polymorphism and the metabolic syndrome. Acta Medica Marisiensis 2016; 62(Suppl8):103.
  11. 11. Uehara SK, Rosa G. Association of homocysteinemia with high concentrations of serum insulin and uric acid in Brazilian subjects with metabolic syndrome genotyped for C677T polymorphism in the methylenetetrahydrofolatereductase gene. Nutr Res. 2008; 28(11):760-766.10.1016/j.nutres.2008.09.00619083485
  12. 12. Movva S, Alluri RV, Venkatasubramanian S, Vedicherla B, Vattam KK. Association of methylene tetrahydrofolate reductase C677T genotype with type 2 diabetes mellitus patients with and without renal complications. Genet Test Mol Biomarkers 2011; 15:257–261.10.1089/gtmb.2010.011821186995
  13. 13. Csép K, Todorona Butilă A, Bănescu C - A MHTFR - C6777T génpolimorfizmus hatása az insulin-érzékenységre és a hasnyálmirigy béta-sejt funkcióra. Orvostudományi Értesítő 2017;90(2):10
  14. 14. Werstuck GH, Lentz SR, Dayal S. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001; 107:1263–1273.10.1172/JCI1159620929511375416
  15. 15. Sun MY, Zhang L, Shi SL, Lin JN. Associations between Methylenetetrahydrofolate Reductase (MTHFR) Polymorphisms and Non-Alcoholic Fatty Liver Disease (NAFLD) Risk: A Meta-Analysis. PLoS ONE 11(4): e0154337.10.1371/journal.pone.0154337485138227128842
  16. 16. Kasapoglu B, Turkay C, Yalcin KS, Kosar A, Bozkurt A. MTHFR 677C/T and 1298A/C mutations and non-alcoholic fatty liver disease. Clin Med. 2015; 15(3):248.10.7861/clinmedicine.15-3-248495310826031974
  17. 17. Yang Q, Bailey L, Clarke R, et al.Prospective study of methylenetetrahydrofolate reductase (MTHFR) variant C677T and risk of all-cause and cardiovascular disease mortality among 6000 US adults. Am J Clin Nutr May; 2012; 95(5):1245-1253.10.3945/ajcn.111.02238422492374
  18. 18. Clarke R, Bennett DA, Parish S, et al. Homocysteine and coronary heart disease: meta-analysis of MTHFR case-control studies, avoiding publication bias. PloS Med 9(2):e100117710.1371/journal.pmed.1001177328355922363213
  19. 19. Di Renzo L, Marsella LT, Sarlo F, et al. C677T gene polymorphism of MTHFR and metabolic syndrome: response to dietary intervention. Journal of Translational Medicine 2014; 12:329.10.1186/s12967-014-0329-4426020025432492
  20. 20. Reddy JK, Hashimoto T - Peroxisomal β-oxidation and peroxisome proliferator-activated receptor γ: An Adaptive Metabolic System. Annu Rev Nutr 2001;21: 193–230.10.1146/annurev.nutr.21.1.19311375435
  21. 21. Medina-Gomez G, Gray S, Vidal-Puig A - Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr 2007;10:1132–113710.1017/S136898000700061417903321
  22. 22. Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H - PGC-1α, glucose metabolism and type 2 diabetes mellitus. Journal of Endocrinology 2016;229:R99–R115. doi: 10.1530/JOE-16-0021.10.1530/JOE-16-002127094040
  23. 23. Golledge J, Norman PE - Relationship between two sequence variations in the gene for peroxisome proliferator-activated receptor-gamma and plasma homocysteine concentration. Health in men study. Human Genetics 2008;123(1):35–4010.1007/s00439-007-0446-817999084
  24. 24. Andrulionyte L, Peltola P, Chiasson JL, Laakso M - Single Nucleotide Polymorphisms of PPARD in Combination With the Gly482Ser Substitution of PGC-1A and the Pro12Ala Substitution of PPARG2 Predict the Conversion From Impaired Glucose Tolerance to Type 2 Diabetes The STOP-NIDDM Trial. Diabetes 2006;55(7):2148–215210.2337/db05-162916804087
  25. 25. Deeb SS, Fajas L, Nemoto M, et al - A Pro12Ala substitution in PPAR-gamma-2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nature Genet 1998;20:284-287.10.1038/30999806549
  26. 26. Nitz I, Ewert A, Klapper M, Doring F - Analysis of PGC-1alpha variants Gly482Ser and Thr612Met concerning their PPARgamma2-coactivation function. Biochemical and Biophysical Research Communications 2007;353:481–486.10.1016/j.bbrc.2006.12.04217187763
  27. 27. Choi YS, Hong JM, Lim S, SooKo K, Pak KM - Impaired coactivator activity of the Gly482 variant of peroxisome proliferator-activated receptor c coactivator-1a (PGC-1a) on mitochondrial transcription factor A (Tfam) promoter. Biochemical and Biophysical Research Communications, 2006;344:708–712.10.1016/j.bbrc.2006.03.19316631115
  28. 28. Heikkinen S, Auwerx J, Argmann CA - PPARgamma in human and mouse physiology. Biochim. Biophys. Acta 2007;1771:999–1013.10.1016/j.bbalip.2007.03.006
  29. 29. Petersen RK, Larsen SB, Jensen DM, et al - PPARgamma-PGC-1alpha activity is determinant of alcohol related breast cancer. Cancer Letters 2012;315:59-68.10.1016/j.canlet.2011.10.00922050908
  30. 30. Ruchat SM, Weisnagel SJ, Vohl MC, Rankinen T, Bouchard C, Pérusse L - Evidence for interaction between PPARG Pro12Ala and PPARGC1A Gly482Ser polymorphisms in determining type 2 diabetes intermediate phenotypes in overweight subjects. Exp Clin Endocrinol Diabetes 2009;117:455-459.10.1055/s-0029-121635219536736
DOI: https://doi.org/10.2478/amma-2018-0009 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 64 - 69
Submitted on: May 11, 2018
Accepted on: Jun 12, 2018
Published on: Jul 7, 2018
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Katalin Csép, Eszter Szigeti, Krisztina Szalman, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.