Have a personal or library account? Click to login

Development of a Capillary Electrophoresis Method for the Separation of Fluoroquinolone Derivatives in Acidic Background Electrolyte

By:
Open Access
|Jul 2014

References

  1. 1. Beale JM jr. Synthetic antibacterial agents, in Block JH, Beale JM (eds): Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry 11th edition. Lippincott Williams & Wilkins. Philadelphia, 2004, 247-258.
  2. 2. Andersson MI, MacGowan AO. Development of the quinolones. J Antimicrob Chemother. 2003;51:1-11.10.1093/jac/dkg212
  3. 3. Bolon MK. The newer fluoroquinolone. Med Clin N Am. 2011;95:793-811.10.1016/j.mcna.2011.03.006
  4. 4. Jimidar MI. Theoretical considerations in performance of various modes of CE, in Ahuja S, Jimidar M (eds): Capillary Electrophoresis Methods for Pharmaceutical Analysis, Volume 9 (Separation Science and Technology) 1 edition. Academic Press Elsevier, Amsterdam, 2008, 9-42.10.1016/S0149-6395(07)00002-5
  5. 5. Pérez-Ruiz T, Martínez-Lozano C, Sanz A, Bravo E. Separation and simultaneous determination of quinolone antibiotics by capillary zone electrophoresis. Chromatographia. 1999;49:419-423.10.1007/BF02467617
  6. 6. Sun H, He P, Lv Y, Liang S. Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J Chromatogr B. 2007;852:145-151.10.1016/j.jchromb.2007.01.016
  7. 7. Ferdig M, Kaleta A, Thanh Vo TD, Buchberger W. Improved capillary electrophoretic separation of nine (fluoro)quinolones with fluorescence detection for biological and environmental samples. Journal of Chromatography A. 2004;1047:305-311.10.1016/S0021-9673(04)01102-1
  8. 8. Yang Z, Qin W. Separation of fluoroquinolones in acidic buffer by capillary electrophoresis with contactless conductivity detection. J Chromatogr A. 2009;1216:5327-5332.10.1016/j.chroma.2009.05.014
  9. 9. Faria AF, de Souza MVN, de Almeida MV, de Oliveira MAL. Simoultaneous separation of five fluoroquinolone antibiotics by capillary zone electrophoresis. Anal Chim Acta. 2006;579:185-192.10.1016/j.aca.2006.07.037
  10. 10. Sun J, Sakai S, Tauchi Y, et al. Determination of lipophilicity of two quinolone antibacterials, ciprofloxacin and grepafloxacin, in the protonation equilibrium. Eur J Pharm Biopharm. 2002;54:51-58.10.1016/S0939-6411(02)00018-8
  11. 11. Lemaire S, Tulkens PM, Van Bambeke F. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Ch. 2011;55:649-658.10.1128/AAC.01201-10302875321135179
  12. 12. Noszál B. Acid-base properties of bioligands, in K. Burger (eds): Biocoordination chemistry: coordination equilibra in biologically active system. Ellis Horwood, Chichester UK, 1990, 18-41.
  13. 13. Lee DS, Hun HJ, Kim K, et al. Dissociation and complexation of fl uoroquinolone analogues. J Pharm Biomed Anal. 1994;12:157-164.10.1016/0731-7085(94)90025-6
  14. 14. Rusu A, Tóth G, Szőcs L, et al. Triprotic site-specific acid-base equilibria and related properties of fluoroquinolone antibacterials. J Pharm Biomed Anal. 2012;66:50-57.10.1016/j.jpba.2012.02.024
  15. 15. Lin CE, Deng YJ, Liao WS, et al. Electrophoretic behavior and pKa determination of quinolones with a piperazinyl substituent by capillary zone electrophoresis. J Chromatogr A. 2004;1051:283-290.10.1016/S0021-9673(04)01422-0
  16. 16. Lombardo-Agüí M, García-Campana AM, Gámiz-Gracia L, Cruces Blanco C. Laser induced fluorescence coupled to capillary electrophoresis for the determination of fluoroquinolones in foods of animal origin using molecularly imprinted polymers. J Chromatogr A. 2010;1217: 2237-2242.10.1016/j.chroma.2010.02.016
  17. 17. Yang Z, Qin W. Separation of fluoroquinolones in acidic buffer by capillary electrophoresis with contactless conductivity detection. J Chromatogr A. 2009;1216:5327-5332.10.1016/j.chroma.2009.05.014
  18. 18. European Pharmacopoeia 7th edition. Council of Europe, Strasbourg, 2010, 367.
  19. 19. Drakopoulos AI, Ioannou PC. Spectrofluorimetric study of the acid-base equilibria and complexation behavior of the fluoroquinolone antibiotics ofloxacin, norfloxacin, ciprofloxacin and pefloxacin in aqueous solution.
  20. Anal Chim Acta. 1997;354:197-204.10.1016/S0003-2670(97)00465-0
  21. 20. Park HR, Kim TH, Bark KM. Physicochemical properties of quinolone antibiotics in various environments. Eur J Med Chem. 2002;37:443-460.10.1016/S0223-5234(02)01361-2
  22. 21. Barbosa J, Barrón D, Jiménez-Lozano E, Sanz-Nebot V. Comparison between capillary electrophoresis, liquid chromatography, potentiometric and spectrophotometric techniques for evaluation of pKa values of zwitterionic drugs in acetonitrile-water mixtures. Anal Chim Acta. 2001;437:309-321.10.1016/S0003-2670(01)00997-7
  23. 22. Jiménez-Lozano E, Marqués I, Barrón D, Beltrán JL, Barbosa J.
  24. Determination of pKa values of quinolones from mobility and spectroscopic data obtained by CE and a DAD. Anal Chim Acta. 2002;464:37-45.10.1016/S0003-2670(02)00435-X
  25. 23. Langlois MH, Montagut M, Dubost JP, Grellet J, Saux MC. Protonation equilibrium and lipophilicity of moxifloxacin. J Pharm Biomed Anal. 2005;37:389-393.10.1016/j.jpba.2004.10.02215708683
  26. 24. Lorenzo F, Navaratnam S, Edge R, Allen NS. Primary Photophysical Properties of Moxifloxacin - A Fluoroquinolone Antibiotic. Photochem Photobiol. 2008;84:1118-1125.10.1111/j.1751-1097.2007.00269.x
  27. 25. Neves P, Leite A, Rangel M, de Castro B, Gameiro P. Influence of structural factors on the enhanced activity of moxifloxacin: a fluorescence and EPR spectroscopic study, Anal Bioanal Chem. 2007;387:1543-1552.
  28. 26. Takács-Novák K, Noszál B, Hermecz I, et al. Protonation equilibria of quinolone antibacterials. J Pharm Sci. 1990;79:1023-1028.10.1002/jps.2600791116
  29. 27. Altria KD. Introduction to CE and the Use of CE in Pharmaceutycal Analysis, in Altria KD (eds): Analysis of Pharmaceuticals by Capillary Electrophoresis. Chromatographia CE-Series, Vieweg, 1998, 1-18.10.1007/978-3-322-85011-9_1
  30. 28. Sänger-van de Griend CE. General Considerations to Improve Performance of CE Methods, in Ahuja S, Jimidar M (eds): Capillary Electrophoresis Methods for Pharmaceutical Analysis. Elsevier/Academic Press, Amsterdam, 2008, 123-144.10.1016/S0149-6395(07)00006-2
  31. 29. ICH. Validation of analytical procedures: text and methodology Q2(R1).
  32. Geneva, 2005
  33. 30. Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int. 2007;165:216-224.10.1016/j.forsciint.2006.05.02116781833
  34. 31. Peters FT, Maurer HH. Bioanalytical method validation and its implications for forensic and clinical toxicology - A review, in De Bièvre P, Günzler H (eds.): Validation in Chemical Measurement, Springer-Verlag, Berlin Heidelberg, 2005, 1-9.10.1007/3-540-27034-5_1
  35. 32. Ross GA. Instrumental validation in capillary electrophoresis and checkpoints for method validation, in De Bièvre P, Günzler H (eds.): Validation in Chemical Measurement, Springer-Verlag, Berlin Heidelberg, 2005, 14-23. 10.1007/3-540-27034-5_3
DOI: https://doi.org/10.2478/amma-2014-0023 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 109 - 115
Submitted on: Jun 11, 2013
Accepted on: Jun 7, 2014
Published on: Jul 2, 2014
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Aura Rusu, G. Hancu, Á. Gyéresi, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.