Bouguila, N. (2013). On the smoothing of multinomial estimates using Liouville mixture models and applications, Pattern Analysis and Applications16(3): 349–363.10.1007/s10044-011-0236-8
Calvo, B. and Santafé, G. (2016). SCMAMP: Statistical comparison of multiple algorithms in multiple problems, The R Journal8(1): 248–256.10.32614/RJ-2016-017
Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning, Proceedings of the 9th European Conference on Artificial Intelligence, London, UK, pp. 147–149.
Cestnik, B. and Bratko, I. (1991). On estimating probabilities in tree pruning, Proceedings of the European Working Session on Learning, Porto, Portugal, pp. 138–150.10.1007/BFb0017010
Chan, J.C.C. and Kroese, D.P. (2011). Rare-event probability estimation with conditional Monte Carlo, Annals of Operations Research189(1): 43–61.10.1007/s10479-009-0539-y
Chandra, B. and Gupta, M. (2011). Robust approach for estimating probabilities in naïve-Bayes classifier for gene expression data, Expert Systems with Applications38(3): 1293–1298.10.1016/j.eswa.2010.06.076
DasGupta, A. (2011). Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics, Springer, New York, NY.10.1007/978-1-4419-9634-3
Domingos, P. and Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning29(2): 103–130.10.1023/A:1007413511361
Džeroski, S., Cestnik, B. and Petrovski, I. (1993). Using the m-estimate in rule induction, Journal of Computing and Information Technology1(1): 37–46.
Fienberg, S.E. and Holland, P.W. (1972). On the choice of flattening constants for estimating multinomial probabilities, Journal of Multivariate Analysis2(1): 127–134.10.1016/0047-259X(72)90014-0
Flach, P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, New York, NY.10.1017/CBO9780511973000
Fürnkranz, J. and Flach, P.A. (2005). ROC ‘n’ rule learning—towards a better understanding of covering algorithms, Machine Learning58(1): 39–77.10.1007/s10994-005-5011-x
García, S., Fernández, A., Luengo, J. and Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, Information Sciences180(10): 2044–2064.10.1016/j.ins.2009.12.010
García, S. and Herrera, F. (2008). An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons, Journal of Machine Learning Research9(12): 2677–2694.
Grover, J. (2012). Strategic Economic Decision-Making: Using Bayesian Belief Networks to Solve Complex Problems, Springer New York, NY.10.1007/978-1-4614-6040-4
Piegat, A. and Landowski, M. (2012). Optimal estimator of hypothesis probability for data mining problems with small samples, International Journal of Applied Mathematics and Computer Science22(3): 629–645, DOI: 10.2478/v10006-012-0048-z.10.2478/v10006-012-0048-z
Piegat, A. and Landowski, M. (2013). Mean square error optimal completeness estimator eph2 of probability, Journal of Theoretical and Applied Computer Science7(3): 3–20.
Piegat, A. and Landowski, M. (2014). Specialized, MSE-optimal m-estimators of the rule probability especially suitable for machine learning, Control and Cybernetics43(1): 133–160.
R Core Team (2018). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org/.
Sulzmann, J.N. and Fürnkranz, J. (2009). An empirical comparison of probability estimation techniques for probabilistic rules, in J. Gama et al. (Eds), Discovery Science, Springer, Heidelberg, pp. 317–331.10.1007/978-3-642-04747-3_25