Have a personal or library account? Click to login
Revisiting the Optimal Probability Estimator from Small Samples for Data Mining Cover

Revisiting the Optimal Probability Estimator from Small Samples for Data Mining

By: Bojan Cestnik  
Open Access
|Dec 2019

References

  1. Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis, Springer, New York, NY.10.1007/978-1-4757-4286-2
  2. Bouguila, N. (2013). On the smoothing of multinomial estimates using Liouville mixture models and applications, Pattern Analysis and Applications16(3): 349–363.10.1007/s10044-011-0236-8
  3. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). Classification and Regression Trees, Wadsworth, Belmont.
  4. Calvo, B. and Santafé, G. (2016). SCMAMP: Statistical comparison of multiple algorithms in multiple problems, The R Journal8(1): 248–256.10.32614/RJ-2016-017
  5. Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning, Proceedings of the 9th European Conference on Artificial Intelligence, London, UK, pp. 147–149.
  6. Cestnik, B. (2018). Experimental framework in R for experimenting with probability estimations from small samples, https://github.com/BojanCestnik/probability-estimation.R.
  7. Cestnik, B. and Bratko, I. (1991). On estimating probabilities in tree pruning, Proceedings of the European Working Session on Learning, Porto, Portugal, pp. 138–150.10.1007/BFb0017010
  8. Chan, J.C.C. and Kroese, D.P. (2011). Rare-event probability estimation with conditional Monte Carlo, Annals of Operations Research189(1): 43–61.10.1007/s10479-009-0539-y
  9. Chandra, B. and Gupta, M. (2011). Robust approach for estimating probabilities in naïve-Bayes classifier for gene expression data, Expert Systems with Applications38(3): 1293–1298.10.1016/j.eswa.2010.06.076
  10. DasGupta, A. (2011). Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics, Springer, New York, NY.10.1007/978-1-4419-9634-3
  11. DeGroot, M. and Schervish, M. (2012). Probability and Statistics, Addison-Wesley, Boston, MA.
  12. Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research7(1): 1–30.
  13. Domingos, P. and Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning29(2): 103–130.10.1023/A:1007413511361
  14. Džeroski, S., Cestnik, B. and Petrovski, I. (1993). Using the m-estimate in rule induction, Journal of Computing and Information Technology1(1): 37–46.
  15. Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Willey, Hoboken, NJ.
  16. Fienberg, S.E. and Holland, P.W. (1972). On the choice of flattening constants for estimating multinomial probabilities, Journal of Multivariate Analysis2(1): 127–134.10.1016/0047-259X(72)90014-0
  17. Flach, P. (2012). Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, New York, NY.10.1017/CBO9780511973000
  18. Fürnkranz, J. and Flach, P.A. (2005). ROC ‘n’ rule learning—towards a better understanding of covering algorithms, Machine Learning58(1): 39–77.10.1007/s10994-005-5011-x
  19. García, S., Fernández, A., Luengo, J. and Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, Information Sciences180(10): 2044–2064.10.1016/j.ins.2009.12.010
  20. García, S. and Herrera, F. (2008). An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons, Journal of Machine Learning Research9(12): 2677–2694.
  21. Good, I.J. (1965). The Estimation of Probabilities: An Essay on Modern Bayesian Methods, MIT Press, Cambridge, MA.
  22. Good, I.J. (1966). How to estimate probabilities, IMA Journal of Applied Mathematics2(4): 364–383.10.1093/imamat/2.4.364
  23. Good, P. and Hardin, J. (2012). Common Errors in Statistics (and How to Avoid Them), Wiley, Hoboken, NJ.10.1002/9781118360125
  24. Grover, J. (2012). Strategic Economic Decision-Making: Using Bayesian Belief Networks to Solve Complex Problems, Springer New York, NY.10.1007/978-1-4614-6040-4
  25. Gudder, S. (1988). Quantum Probability, Academic Press, Boston, MA.
  26. Laplace, P.-S. (1814). Essai philosophique sur les probabilités, Courcier, Paris.
  27. Larose, D. (2010). Discovering Statistics, W.H. Freeman, New York, NY.
  28. Mitchell, T.M. (1997). Machine Learning, McGrawHill, Maidenhead.
  29. Piegat, A. and Landowski, M. (2012). Optimal estimator of hypothesis probability for data mining problems with small samples, International Journal of Applied Mathematics and Computer Science22(3): 629–645, DOI: 10.2478/v10006-012-0048-z.10.2478/v10006-012-0048-z
  30. Piegat, A. and Landowski, M. (2013). Mean square error optimal completeness estimator eph2 of probability, Journal of Theoretical and Applied Computer Science7(3): 3–20.
  31. Piegat, A. and Landowski, M. (2014). Specialized, MSE-optimal m-estimators of the rule probability especially suitable for machine learning, Control and Cybernetics43(1): 133–160.
  32. R Core Team (2018). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org/.
  33. Rudas, T. (2008). Handbook of Probability: Theory and Applications, SAGE Publications, Thousand Oaks, CA.10.4135/9781452226620
  34. Starbird, M. (2006). What Are the Chances? Probability Made Clear, Chantilly, VA.
  35. Sulzmann, J.N. and Fürnkranz, J. (2009). An empirical comparison of probability estimation techniques for probabilistic rules, in J. Gama et al. (Eds), Discovery Science, Springer, Heidelberg, pp. 317–331.10.1007/978-3-642-04747-3_25
  36. Webb, J. (2007). Game Theory: Decisions, Interaction and Evolution, Springer, London.
DOI: https://doi.org/10.2478/amcs-2019-0058 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 783 - 796
Submitted on: Dec 15, 2018
Accepted on: Apr 23, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Bojan Cestnik, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.