Abdi, L. and Hashemi, S. (2016). To combat multi-class imbalanced problems by means of over-sampling techniques, IEEE Transactions on Knowledge and Data Engineering28(1): 238–251.10.1109/TKDE.2015.2458858
Agrawal, A., Herna, L.V. and Paquet, E. (2015). SCUT: Multi-class imbalanced data classification using SMOTE and cluster-based undersampling, International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Lisbon, Portugal, Vol. 01, pp. 226–234.10.5220/0005595502260234
Błaszczyński, J. and Stefanowski, J. (2015). Neighbourhood sampling in bagging for imbalanced data, Neurocomputing150(Part B): 184–203.10.1016/j.neucom.2014.07.064
Fernandez, A., Lopez, V., Galar, M., Jesus, M. and Herrera, F. (2013). Analysing the classification of imbalanced data sets with multiple classes, binarization techniques and ad-hoc approaches, Knowledge-Based Systems42: 97–110.10.1016/j.knosys.2013.01.018
Fernández, A., Garca, S., Galar, M., Prati, R., Krawczyk, B. and Herrera, H. (2018). Learning from Imbalanced Data Sets, Springer, Cham.10.1007/978-3-319-98074-4
Fernandez-Navarro, F., Hervás-Martínez, C. and Gutiérrez, P. A. (2011). A dynamic over-sampling procedure based on sensitivity for multi-class problems, Pattern Recognition44(8): 1821–1833.10.1016/j.patcog.2011.02.019
Galar, M., Fernndez, A., Barrenechea, E., Bustince, H. and Herrera, F.A. (2011). An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes, Pattern Recognition44(8): 1761 – 1776.10.1016/j.patcog.2011.01.017
Garcia, V., Sanchez, J.S. and Mollineda, R.A. (2007). An empirical study of the behaviour of classifiers on imbalanced and overlapped data sets, in L. Rueda et al. (Eds), Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes on Computer Science, Vol. 4756, Springer, Berlin, pp. 397–406.10.1007/978-3-540-76725-1_42
Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions, Progress Artificial Intelligence5(4): 221–232.10.1007/s13748-016-0094-0
Lango, M. (2019). Tackling the problem of class imbalance in multi-class sentiment classification: An experimental study, Foundations of Computing and Decision Sciences44(2): 151–178.10.2478/fcds-2019-0009
Lango, M., Napierala, K. and Stefanowski, J. (2017). Evaluating difficulty of multi-class imbalanced data, 23rd International Symposium ISMIS, Warsaw, Poland, pp. 312–322.10.1007/978-3-319-60438-1_31
Lango, M. and Stefanowski, J. (2018). Multi-class and feature selection extensions of roughly balanced bagging for imbalanced data, Journal of Intelligent Information Systems50(1): 97–127.10.1007/s10844-017-0446-7
Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class distribution, Technical Report A-2001-2, University of Tampere, Tampere.10.1007/3-540-48229-6_9
Lopez, V., Fernandez, A., Garcia, S., Palade, V. and Herrera, F. (2014). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics, Information Sciences257: 113–141.10.1016/j.ins.2013.07.007
Napierala, K. and Stefanowski, J. (2012). The influence of minority class distribution on learning from imbalance data, Proceedings of the 7th Conference HAIS 2012, Salamanca, Spain, pp. 139–150.10.1007/978-3-642-28931-6_14
Napierala, K. and Stefanowski, J. (2016). Types of minority class examples and their influence on learning classifiers from imbalanced data, Journal of Intelligent Information Systems46(3): 563–597.10.1007/s10844-015-0368-1
Napierala, K., Stefanowski, J. and Wilk, S. (2010). Learning from imbalanced data in presence of noisy and borderline examples, in M. Szczuka et al. (Eds), Proceedings of the 7th International Conference RSCTC 2010, Lecture Notes on Artificial Intelligence, Vol. 6086, Springer, Berlin, pp. 158–167.10.1007/978-3-642-13529-3_18
Prati, R., Batista, G. and Monard, M. (2004). Class imbalance versus class overlapping: An analysis of a learning system behavior, in R. Monroy et al. (Eds), Advances in Artificial Intelligence, MICAI 2004, Lecture Notes in Computer Science, Vol. 2972, Springer, Berlin/Heidelberg, pp. 312–321.10.1007/978-3-540-24694-7_32
Seaz, J., Krawczyk, B. and Wozniak, M. (2016). Analyzing the oversampling of different classes and types in multi-class imbalanced data, Pattern Recognition57: 164–178.10.1016/j.patcog.2016.03.012
Stefanowski, J. (2013). Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data, in S. Ramanna et al. (Eds), Emerging Paradigms in Machine Learning, Smart Innovation, Systems and Technologies, Vol. 13, Springer, Berlin/Heidelberg, pp. 277–306.10.1007/978-3-642-28699-5_11
Stefanowski, J. (2016). Dealing with data difficulty factors while learning from imbalanced data, in J. Mielniczuk (Eds), Challenges in Computational Statistics and Data Mining, Studies in Computational Intelligence, Vol. 605, Springer, Cham, pp. 333–363.10.1007/978-3-319-18781-5_17
Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science27(4): 669–679, DOI: 10.1515/amcs-2017-0046.10.1515/amcs-2017-0046
Wang, S. and Yao, X. (2012). Mutliclass imbalance problems: Analysis and and potential solutions, IEEE Transactions Systems, Man and Cybernetics, B42(4): 1119–1130.10.1109/TSMCB.2012.218728022438514
Wojciechowski, S., Wilk, S. and Stefanowski, J. (2017). An algorithm for selective preprocessing of multi-class imbalanced data, International Conference on Computer Recognition Systems, CORES 2017, Polanica Zdrój, Poland, pp. 238–247.10.1007/978-3-319-59162-9_25