Have a personal or library account? Click to login
Using Information on Class Interrelations to Improve Classification of Multiclass Imbalanced Data: A New Resampling Algorithm Cover

Using Information on Class Interrelations to Improve Classification of Multiclass Imbalanced Data: A New Resampling Algorithm

Open Access
|Dec 2019

References

  1. Abdi, L. and Hashemi, S. (2016). To combat multi-class imbalanced problems by means of over-sampling techniques, IEEE Transactions on Knowledge and Data Engineering28(1): 238–251.10.1109/TKDE.2015.2458858
  2. Agrawal, A., Herna, L.V. and Paquet, E. (2015). SCUT: Multi-class imbalanced data classification using SMOTE and cluster-based undersampling, International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), Lisbon, Portugal, Vol. 01, pp. 226–234.10.5220/0005595502260234
  3. Błaszczyński, J. and Stefanowski, J. (2015). Neighbourhood sampling in bagging for imbalanced data, Neurocomputing150(Part B): 184–203.10.1016/j.neucom.2014.07.064
  4. Fernandez, A., Lopez, V., Galar, M., Jesus, M. and Herrera, F. (2013). Analysing the classification of imbalanced data sets with multiple classes, binarization techniques and ad-hoc approaches, Knowledge-Based Systems42: 97–110.10.1016/j.knosys.2013.01.018
  5. Fernández, A., Garca, S., Galar, M., Prati, R., Krawczyk, B. and Herrera, H. (2018). Learning from Imbalanced Data Sets, Springer, Cham.10.1007/978-3-319-98074-4
  6. Fernandez-Navarro, F., Hervás-Martínez, C. and Gutiérrez, P. A. (2011). A dynamic over-sampling procedure based on sensitivity for multi-class problems, Pattern Recognition44(8): 1821–1833.10.1016/j.patcog.2011.02.019
  7. Galar, M., Fernndez, A., Barrenechea, E., Bustince, H. and Herrera, F.A. (2011). An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes, Pattern Recognition44(8): 1761 – 1776.10.1016/j.patcog.2011.01.017
  8. Garcia, V., Sanchez, J.S. and Mollineda, R.A. (2007). An empirical study of the behaviour of classifiers on imbalanced and overlapped data sets, in L. Rueda et al. (Eds), Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes on Computer Science, Vol. 4756, Springer, Berlin, pp. 397–406.10.1007/978-3-540-76725-1_42
  9. He, H. and Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications, Wiley, New York, NY.10.1002/9781118646106
  10. Jo, T. and Japkowicz, N. (2004). Class imbalances versus small disjuncts, ACM SIGKDD Explorations Newsletter6(1): 40–49.10.1145/1007730.1007737
  11. Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions, Progress Artificial Intelligence5(4): 221–232.10.1007/s13748-016-0094-0
  12. Lango, M. (2019). Tackling the problem of class imbalance in multi-class sentiment classification: An experimental study, Foundations of Computing and Decision Sciences44(2): 151–178.10.2478/fcds-2019-0009
  13. Lango, M., Napierala, K. and Stefanowski, J. (2017). Evaluating difficulty of multi-class imbalanced data, 23rd International Symposium ISMIS, Warsaw, Poland, pp. 312–322.10.1007/978-3-319-60438-1_31
  14. Lango, M. and Stefanowski, J. (2018). Multi-class and feature selection extensions of roughly balanced bagging for imbalanced data, Journal of Intelligent Information Systems50(1): 97–127.10.1007/s10844-017-0446-7
  15. Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class distribution, Technical Report A-2001-2, University of Tampere, Tampere.10.1007/3-540-48229-6_9
  16. Lopez, V., Fernandez, A., Garcia, S., Palade, V. and Herrera, F. (2014). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics, Information Sciences257: 113–141.10.1016/j.ins.2013.07.007
  17. Napierala, K. and Stefanowski, J. (2012). The influence of minority class distribution on learning from imbalance data, Proceedings of the 7th Conference HAIS 2012, Salamanca, Spain, pp. 139–150.10.1007/978-3-642-28931-6_14
  18. Napierala, K. and Stefanowski, J. (2016). Types of minority class examples and their influence on learning classifiers from imbalanced data, Journal of Intelligent Information Systems46(3): 563–597.10.1007/s10844-015-0368-1
  19. Napierala, K., Stefanowski, J. and Wilk, S. (2010). Learning from imbalanced data in presence of noisy and borderline examples, in M. Szczuka et al. (Eds), Proceedings of the 7th International Conference RSCTC 2010, Lecture Notes on Artificial Intelligence, Vol. 6086, Springer, Berlin, pp. 158–167.10.1007/978-3-642-13529-3_18
  20. Prati, R., Batista, G. and Monard, M. (2004). Class imbalance versus class overlapping: An analysis of a learning system behavior, in R. Monroy et al. (Eds), Advances in Artificial Intelligence, MICAI 2004, Lecture Notes in Computer Science, Vol. 2972, Springer, Berlin/Heidelberg, pp. 312–321.10.1007/978-3-540-24694-7_32
  21. Seaz, J., Krawczyk, B. and Wozniak, M. (2016). Analyzing the oversampling of different classes and types in multi-class imbalanced data, Pattern Recognition57: 164–178.10.1016/j.patcog.2016.03.012
  22. Stefanowski, J. (2013). Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data, in S. Ramanna et al. (Eds), Emerging Paradigms in Machine Learning, Smart Innovation, Systems and Technologies, Vol. 13, Springer, Berlin/Heidelberg, pp. 277–306.10.1007/978-3-642-28699-5_11
  23. Stefanowski, J. (2016). Dealing with data difficulty factors while learning from imbalanced data, in J. Mielniczuk (Eds), Challenges in Computational Statistics and Data Mining, Studies in Computational Intelligence, Vol. 605, Springer, Cham, pp. 333–363.10.1007/978-3-319-18781-5_17
  24. Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science27(4): 669–679, DOI: 10.1515/amcs-2017-0046.10.1515/amcs-2017-0046
  25. Wang, S. and Yao, X. (2012). Mutliclass imbalance problems: Analysis and and potential solutions, IEEE Transactions Systems, Man and Cybernetics, B42(4): 1119–1130.10.1109/TSMCB.2012.218728022438514
  26. Wojciechowski, S., Wilk, S. and Stefanowski, J. (2017). An algorithm for selective preprocessing of multi-class imbalanced data, International Conference on Computer Recognition Systems, CORES 2017, Polanica Zdrój, Poland, pp. 238–247.10.1007/978-3-319-59162-9_25
  27. Zhou, Z.H. and Liu, X.Y. (2010). On multi-class cost sensitive learning, Computational Intelligence26(3): 232–257.10.1111/j.1467-8640.2010.00358.x
DOI: https://doi.org/10.2478/amcs-2019-0057 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 769 - 781
Submitted on: Dec 14, 2018
Accepted on: Jul 12, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Małgorzata Janicka, Mateusz Lango, Jerzy Stefanowski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.