Have a personal or library account? Click to login
An Adaptive Identification Method Based on the Modulating Functions Technique and Exact State Observers for Modeling and Simulation of a Nonlinear Miso Glass Melting Process
Asiri, S.M. and Laleg-Kirati, T. (2017). Modulating functions-based method for parameters and source estimation in one-dimensional partial differential equations, Inverse Problems in Science and Engineering25(8): 1191–1215.10.1080/17415977.2016.1240793
Ayla, L. and Solis, J. (1991). Structured logic control in glass preparation processes, IEEE Transactions on Industry Applications27(1): 108–111.10.1109/28.67540
Balestrino, A., Landi, A. and Sani, L. (2000a). Identification of Hammerstein systems with input/output time delay via modulating functions, IFAC Proceedings Volumes33(23): 199–203.10.1016/S1474-6670(17)36942-2
Balestrino, A., Landi, A. and Sani, L. (2000b). Parameter identification of continuous systems with multiple-input time delays via modulating functions, IEE Proceedings: Control Theory and Applications147(1): 19–27.10.1049/ip-cta:20000133
Byrski, J. and Byrski, W. (2012). The role of parameter constraints in EE and OE methods for optimal identification of continuous LTI models, International Journal of Applied Mathematics and Computer Science22(2): 379–388, DOI: 10.2478/v10006-012-0028-3.10.2478/v10006-012-0028-3
Byrski, J. and Byrski, W. (2016). A double window state observer for detection and isolation of abrupt changes in parameters, International Journal of Applied Mathematics and Computer Science26(3): 585–602, DOI: 10.1515/amcs-2016-0041.10.1515/amcs-2016-0041
Byrski, J. and Byrski, W. (2018). An optimal identification of the input-output disturbances in linear dynamic systems by the use of the exact observation of the state, Mathematical Problems in Engineering: 1–15, Article ID 8048567, DOI: 10.1155/2018/8048567.10.1155/2018/8048567
Byrski, W. and Fuksa, S. (1995). Optimal identification of continuous systems in L2 space by the use of compact support filter, International Journal of Modelling & Simulation15(4): 125–131.10.1080/02286203.1995.11760263
Byrski, W. and Kubiński, R. (1997). The convolution method for optimal identification generalized to MIMO continuous systems, Modelling, Identification and Control: Proceedings of the 16th IASTED International Conference, Inns-bruck, Austria, pp. 44–47.
Cieza, O.B., Tafur, J.C. and Reger, J. (2014). Frequency domain modulating functions for continuous-time identification of linear and nonlinear systems, 16th Latinamerican Control Conference, At Quintana Roo, Mexico, pp. 690–695.
Co, T. and Ydstie, B. (1990). System identification using modulating functions and fast Fourier transforms, Computers & Chemical Engineering14(10): 1051–1066.10.1016/0098-1354(90)85002-R
Gough, B.P. and Matovich, D. (1997). Predictive-adaptive temperature control of molten glass, IEEE Industry Applications Society Dynamic Modeling Control Applications for Industry Workshop, Vancouver, BC, Canada, pp. 51–55.
Grega, W., Piłat, A. and Tutaj, A. (2015). Modelling of the glass melting process for real-time implementation, International Journal of Modeling and Optimization5(6): 366–373.10.7763/IJMO.2015.V5.490
Grega, W., Tutaj, A., Klemiato, M. and Byrski, W. (2016). Comparison of real-time industrial process control solutions: Glass melting case study, 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Mi˛edzyzdroje, Poland, pp. 122–127.10.1109/MMAR.2016.7575119
Janiczek, T. (2010). Generalization of the modulating functions method into the fractional differential equations, Bulletin of the Polish Academy of Sciences: Technical Sciences58(4): 593–599.10.2478/v10175-010-0060-0
Jouffroy, J. and Reger, J. (2015). Finite-time simultaneous parameter and state estimation using modulating functions, IEEE Conference on Control Applications (CCA), Sydney, NSW, Australia, pp. 394–399.10.1109/CCA.2015.7320661
Kozłowski, J. and Kowalczuk, Z. (2015). On-line parameter and delay estimation of continuous-time dynamic systems, International Journal of Applied Mathematics and Computer Science25(2): 223–232, DOI: 10.1515/amcs-2015-0017.10.1515/amcs-2015-0017
Maletinsky, V. (1979). Identification of continuous dynamical systems with spline-type modulating functions method, IFAC Proceedings Volumes12(8): 275–281.10.1016/S1474-6670(17)65429-6
Pearson, A., Shen, Y. and Klein, V. (1994). Application of Fourier modulating functions to parameter estimation of a multivariable linear differential system, IFAC Proceedings Volumes27(8): 1013–1018.10.1016/S1474-6670(17)47841-4
Preisig, H. and Rippin, D. (1993). Theory and application of the modulating function method. I: Review and theory of the method and theory of the spline-type modulating functions, Computers & Chemical Engineering17(1): 1–16.10.1016/0098-1354(93)80001-4
Rao, G.P., Diekmann, K. and Unbenhauen, H. (1984). Parameter estimation in large scale interconnected systems, IFAC Proceedings Volumes17(2): 729–733.10.1016/S1474-6670(17)61058-9
Rao, G.P. and Sivakumar, G. (1979). Identification of deterministic time-lag systems, IEEE Transactions on Automatic Control21(4): 527–529.10.1109/TAC.1976.1101261
Rao, G.P. and Unbehauen, G. (2006). Identification of continous-time systems, IEE Proceedings: Control Theory and Applications153(2): 185–220.10.1049/ip-cta:20045250
Shinbrot, M. (1957). On the analysis of linear and nonlinear systems, Transactions of the American Society of Mechanical Engineers: Journal of Basic Engineering79: 547–552.10.1115/1.4013092
Wang, Q., Chalaye, G., Thomas, G. and Gilles, G. (1997). Predictive control of a glass process, Control Engineering Practice5(2): 167–173.10.1016/S0967-0661(97)00223-2