Have a personal or library account? Click to login
A Trajectory Planning Based Controller to Regulate an Uncertain 3D Overhead Crane System Cover

A Trajectory Planning Based Controller to Regulate an Uncertain 3D Overhead Crane System

Open Access
|Dec 2019

References

  1. Adeli, M., Zarabadipour, H., Zarabadi, S.H. and Shoorehdeli, M.A. (2011). Anti-swing control for a double-pendulum-type overhead crane via parallel distributed fuzzy LQR controller combined with genetic fuzzy rule set selection, IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, pp. 306–311.10.1109/ICCSCE.2011.6190542
  2. Chen, H., Fang, Y. and Sun, N. (2016). A swing constraint guaranteed MPC algorithm for underactuated overhead cranes, IEEE/ASME Transactions on Mechatronics21(5): 2543–2555.10.1109/TMECH.2016.2558202
  3. Cho, H.C. and Lee, K.S. (2008). Adaptive control and stability analysis of nonlinear crane systems with perturbation, Journal of Mechanical Science and Technology22(6): 1091.10.1007/s12206-008-0216-0
  4. Chwa, D. (2017). Sliding-mode-control-based robust finite-time antisway tracking control of 3-D overhead cranes, IEEE Transactions on Industrial Electronics64(8): 6775–6784.10.1109/TIE.2017.2701760
  5. Davila, J., Fridman, L. and Poznyak, A. (2006). Observation and identification of mechanical systems via second order sliding modes, International Journal of Control79(10): 1251–1262.10.1080/00207170600801635
  6. Fang, Y., Ma, B., Wang, P. and Zhang, X. (2012). A motion planning-based adaptive control method for an underactuated crane system, IEEE Transactions on Control Systems Technology20(1): 241–248.10.1109/TCST.2011.2107910
  7. Ferreira, A., Bejarano, F.J. and Fridman, L.M. (2010). Robust control with exact uncertainties compensation: With or without chattering?, IEEE Transactions on Control Systems Technology19(5): 969–975.10.1109/TCST.2010.2064168
  8. Fujioka, D., Shah, M. and Singhose, W. (2015). Robustness analysis of input-shaped model reference control on a double-pendulum crane, American Control Conference (ACC), Chicago, IL, USA, pp. 2561–2566.10.1109/ACC.2015.7171120
  9. Fujioka, D. and Singhose, W. (2015a). Input-shaped model reference control of a nonlinear time-varying double-pendulum crane, 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, pp. 1–6.10.1109/ASCC.2015.7244565
  10. Fujioka, D. and Singhose, W. (2015b). Performance comparison of input-shaped model reference control on an uncertain flexible system, IFAC-PapersOnLine48(12): 129–134.10.1016/j.ifacol.2015.09.365
  11. Gómez-Estern, F., Van der Schaft, A. and Acosta, J. (2004). Passivation of underactuated systems with physical damping, 6th IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany, pp. 1–3.
  12. Hajdu, S. and Gáspár, P. (2016). Reducing the mast vibration of single-mast stacker cranes by gain-scheduled control, International Journal of Applied Mathematics and Computer Science26(4): 791–802, DOI: 10.1515/amcs-2016-0056.10.1515/amcs-2016-0056
  13. Hamid, M., Jamil, M., Gilani, S.O., Ikramullah, S., Khan, M.N., Malik, M.H. and Ahmad, I. (2016). Jib system control of industrial robotic three degree of freedom crane using a hybrid controller, Indian Journal of Science and Technology9(21).10.17485/ijst/2016/v9i21/94813
  14. Huang, Y., Xue, W., Zhiqiang, G., Sira-Ramirez, H., Wu, D. and Sun, M. (2014). Active disturbance rejection control: Methodology, practice and analysis, 33rd Chinese Control Conference, Nanjing, China, pp. 1–5.10.1109/ChiCC.2014.6896585
  15. Jolevski, D. and Bego, O. (2015). Model predictive control of gantry/bridge crane with anti-sway algorithm, Journal of Mechanical Science and Technology29(2): 827–834.10.1007/s12206-015-0144-8
  16. Kairuz, R.I.V., Aguilar, L.T., de Loza, A.F. and Garcia, J.E.A. (2018). Robust positioning control law for a 3d underactuated crane system, IFAC-PapersOnLine51(13): 450–455.10.1016/j.ifacol.2018.07.319
  17. Käpernick, B. and Graichen, K. (2013). Model predictive control of an overhead crane using constraint substitution, 2013 American Control Conference, Washington, DC, USA, pp. 3973–3978.10.1109/ACC.2013.6580447
  18. Khalil, H.K. (2015). Nonlinear Control, Pearson, New York, NY.
  19. Khatamianfar, A. and Savkin, A.V. (2014). A new tracking control approach for 3D overhead crane systems using model predictive control, European Control Conference (ECC), Strasbourg, France, pp. 796–801.10.1109/ECC.2014.6862298
  20. Kim, D., Park, Y., Park, Y.-s., Kwon, S. and Kim, E. (2011). Dual stage trolley control system for anti-swing control of mobile harbor crane, 11th International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, pp. 420–423.
  21. Lee, H.-H. (2005). Motion planning for three-dimensional overhead cranes with high-speed load hoisting, International Journal of Control78(12): 875–886.10.1080/00207170500197571
  22. Lee, S.-G., Nho, L.C. and Kim, D.H. (2013). Model reference adaptive sliding mode control for three dimensional overhead cranes, International Journal of Precision Engineering and Manufacturing14(8): 1329–1338.10.1007/s12541-013-0180-1
  23. Liu, C., Zhao, H. and Cui, Y. (2014). Research on application of fuzzy adaptive PID controller in bridge crane control system, 5th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, pp. 971–974.10.1109/ICSESS.2014.6933727
  24. Nguyen, Q.C., Ngo, H.-Q.T. and Kim, W.-H. (2015). Nonlinear adaptive control of a 3d overhead crane, 15th International Conference on Control, Automation and Systems (ICCAS), Busan, Korea, pp. 41–47.10.1109/ICCAS.2015.7364876
  25. Ortega, R., Perez, J.A.L., Nicklasson, P.J. and Sira-Ramirez, H.J. (2013). Passivity-Based Control of Euler–Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, Springer, Berlin.
  26. Qian, D. and Yi, J. (2016). Hierarchical Sliding Mode Control for Under-Actuated Cranes, Springer, Heidelberg.10.1007/978-3-662-48417-3
  27. Ramli, L., Mohamed, Z., Abdullahi, A.M., Jaafar, H. and Lazim, I.M. (2017). Control strategies for crane systems: A comprehensive review, Mechanical Systems and Signal Processing95: 1–23.10.1016/j.ymssp.2017.03.015
  28. Saeidi, H., Naraghi, M. and Raie, A.A. (2013). A neural network self tuner based on input shapers behavior for anti sway system of gantry cranes, Journal of Vibration and Control19(13): 1936–1949.10.1177/1077546312453065
  29. Sano, S., Ouyang, H., Yamashita, H. and Uchiyama, N. (2011). LMI approach to robust control of rotary cranes under load sway frequency variance, Journal of System Design and Dynamics5(7): 1402–1417.10.1299/jsdd.5.1402
  30. Sira-Ramirez, H. and Agrawal, S.K. (2004). Differentially Flat Systems, CRC Press, Boca Raton, FL.10.1201/9781482276640
  31. Smoczek, J. (2013). Evolutionary optimization of interval mathematics-based design of a TSK fuzzy controller for anti-sway crane control, International Journal of Applied Mathematics and Computer Science23(4): 749–759, DOI: 10.2478/amcs-2013-0056.10.2478/amcs-2013-0056
  32. Smoczek, J. (2015). Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system, Mechanical Systems and Signal Processing62: 324–340.10.1016/j.ymssp.2015.02.019
  33. Smoczek, J. and Szpytko, J. (2017). Particle swarm optimization-based multivariable generalized predictive control for an overhead crane, IEEE/ASME Transactions on Mechatronics22(1): 258–268.10.1109/TMECH.2016.2598606
  34. Solis, C.U., Clempner, J.B. and Poznyak, A.S. (2016). Designing a terminal optimal control with an integral sliding mode component using a saddle point method approach: A Cartesian 3D-crane application, Nonlinear Dynamics86(2): 911–926.10.1007/s11071-016-2932-9
  35. Spathopoulos, M. and Fragopoulos, D. (2001). Control design of a crane for offshore lifting operations shore crane, in A. Isidori et al. (Eds.), Nonlinear Control in the Year 2000, Springer, London, pp. 469–486.10.1007/BFb0110321
  36. Spathopoulos, M. and Fragopoulos, D. (2004). Pendulation control of an offshore crane, International Journal of Control77(7): 654–670.10.1080/00207170410001703403
  37. Suh, J.-H., Lee, J.-W., Lee, Y.-J. and Lee, K.-S. (2005). Anti-sway position control of an automated transfer crane based on neural network predictive PID controller, Journal of Mechanical Science and Technology19(2): 505–519.10.1007/BF02916173
  38. Sun, N., Fang, Y. and Chen, H. (2014). Adaptive control of underactuated crane systems subject to bridge length limitation and parametric uncertainties, 33rd Chinese Control Conference (CCC), Nanjing, China, pp. 3568–3573.10.1109/ChiCC.2014.6895532
  39. Sun, N., Fang, Y. and Chen, H. (2015a). Adaptive antiswing control for cranes in the presence of rail length constraints and uncertainties, Nonlinear Dynamics81(1–2): 41–51.10.1007/s11071-015-1971-y
  40. Sun, N., Fang, Y., Chen, H. and He, B. (2015b). Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: Design and experiments, IEEE/ASME Transactions on Mechatronics20(5): 2107–2119.10.1109/TMECH.2014.2364308
  41. Sun, N., Fang, Y., Chen, H., Lu, B. and Fu, Y. (2016). Slew/translation positioning and swing suppression for 4-DOF tower cranes with parametric uncertainties: Design and hardware experimentation, IEEE Transactions on Industrial Electronics63(10): 6407–6418.10.1109/TIE.2016.2587249
  42. Tar, J.K., Rudas, I.J., Bitó, J.F., Machado, J.A.T. and Kozłowski, K.R. (2010). Adaptive tackling of the swinging problem for a 2 DOF crane–payload system, in I.J. Rudas et al. (Eds), Computational Intelligence in Engineering, Springer, Berlin/Heidelberg, pp. 103–114.10.1007/978-3-642-15220-7_9
  43. Vazquez, C., Fridman, L. and Collado, J. (2012). Second order sliding mode control of a 3-dimensional overhead-crane, 51st Annual Conference on Decision and Control (CDC), Maui, HI, USA, pp. 6472–6476.10.1109/CDC.2012.6426486
  44. Vázquez, C., Fridman, L., Collado, J. and Castillo, I. (2015). Second-order sliding mode control of a perturbed-crane, Journal of Dynamic Systems, Measurement, and Control137(8): 081010.10.1115/1.4030253
  45. Vukov, M., Van Loock, W., Houska, B., Ferreau, H.J., Swevers, J. and Diehl, M. (2012). Experimental validation of nonlinear MPC on an overhead crane using automatic code generation, American Control Conference (ACC), Montréal, Canada, pp. 6264–6269.10.1109/ACC.2012.6315390
  46. Wu, Z., Xia, X. and Zhu, B. (2015). Model predictive control for improving operational efficiency of overhead cranes, Nonlinear Dynamics79(4): 2639–2657.10.1007/s11071-014-1837-8
  47. Yang, J.H. and Shen, S.H. (2011). Novel approach for adaptive tracking control of a 3-d overhead crane system, Journal of Intelligent & Robotic Systems62(1): 59–80.10.1007/s10846-010-9440-9
  48. Yu, W., Li, X. and Panuncio, F. (2014). Stable neural PID anti-swing control for an overhead crane, Intelligent Automation & Soft Computing20(2): 145–158.10.1080/10798587.2013.861965
  49. Zheng, Q. and Gao, Z. (2010). On practical applications of active disturbance rejection control, 29th Chinese Control Conference, Beijing, China, pp. 6095–6100.
DOI: https://doi.org/10.2478/amcs-2019-0051 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 693 - 702
Submitted on: Dec 13, 2018
Accepted on: Aug 10, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Carlos Aguilar-Ibanez, Miguel S. Suarez-Castanon, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.