Have a personal or library account? Click to login
A Spectral Method of the Analysis of Linear Control Systems Cover
Open Access
|Dec 2019

References

  1. Belov, A.A. and Andrianova, O.G. (2016). Anisotropy-based suboptimal state-feedback control design using linear matrix inequalities, Automation and Remote Control77(10): 1741–1755.10.1134/S0005117916100027
  2. Belov, A.A. Andrianova, O.G. and Kurdyukov, A.P. (2018). Control of Discrete-Time Descriptor Systems, Springer, Cham.10.1007/978-3-319-78479-3
  3. Bertsekas, D.P. (2003). Convex Analysis and Optimization, Athena Scientific, Nashua, NH.
  4. Boichenko, V.A. (2017). Anisotropy-based analysis for case of nonzero initial condition, Large-Scale Systems Control (67): 32–51.
  5. Boichenko, V.A. and Belov, A.A. (2017). On stochastic gain of linear systems with nonzero initial condition, 25th Mediterranean Conference on Control and Automation, MED 2017, Valletta, Malta, pp. 817–821.10.1109/MED.2017.7984219
  6. Boichenko, V.A. and Kurdyukov, A.P. (2016). On lower bound of anisotropic norm, IFAC-PapersOnLine49(13): 48–52.10.1016/j.ifacol.2016.07.925
  7. Boichenko, V.A. and Kurdyukov, A.P. (2017). On lower bound of anisotropic norm of the linear stochastic system, Automation and Remote Control78(4): 643–653.10.1134/S0005117917040063
  8. Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.10.1017/CBO9780511804441
  9. Cover, T.M. and Thomas, J.A. (1991). Elements of Information Theory, Wiley, New York, NY.10.1002/0471200611
  10. Diamond, P., Vladimirov, I.G., Kurdyukov, A.P. and Semyonov, A.V. (2001). Anisotropy-based performance analysis of linear discrete time invariant control systems, International Journal of Control74(1): 28–42.10.1080/00207170150202661
  11. Gantmacher, F.R. (2000). The Theory of Matrices, AMS, Providence, RI.
  12. Iglesias, P.A. and Mustafa, D. (1993). State-space solution of the discrete-time minimum entropy control problem via separation, IEEE Transactions on Automatic Control38(10): 1525–153010.1109/9.241568
  13. Iglesias, P.A., Mustafa, D. and Glover, K. (1990). Discrete-time ℋ controllers satisfying a minimum entropy criterion, Systems & Control Letters14(4): 275–286.10.1016/0167-6911(90)90048-Y
  14. Kurdyukov, A.P. Kustov, A. Yu. Tchaikovsky, M.M. and Karny, M. (2013). The concept of mean anisotropy of signals with nonzero mean, 19th International Conference on Process Control,Štrbské Pleso, Slovakia, pp. 37–41.10.1109/PC.2013.6581379
  15. Kurdyukov, A.P. and Maximov, E.A. (2005). State-space solution to stochastic ℋ-optimization problem with uncertainty, 16th IFAC World Congress, Prague, Czech Republic, pp. 429–434.10.3182/20050703-6-CZ-1902.01016
  16. Kurdyukov, A.P. Maximov, E.A. and Tchaikovsky, M.M. (2006). Homotopy method for solving anisotropy-based stochastic ℋ-optimization problem with uncertainty, 5th IFAC Symposium on Robust Control Design, Toulouse, France, pp. 327–332.10.3182/20060705-3-FR-2907.00057
  17. Kustov, A. Yu. (2014). Anisotropy-based analysis and synthesis problems for input disturbances with nonzero mean, 15th International Carpathian Control Conference, ICCC-2014, Velké Karlovice, Czech Republic, pp. 291–295.10.1109/CarpathianCC.2014.6843614
  18. Kustov, A. Yu., Kurdyukov, A.P. and Yurchenkov, A.V. (2016). On the anisotropy-based bounded real lemma formulation for the systems with disturbance-term multiplicative noise, IFAC-PapersOnLine49(13): 65–69.10.1016/j.ifacol.2016.07.928
  19. Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems, Wiley, New York, NY.
  20. Mustafa, D. and Glover, K. (1990). Minimum EntropyControl, Springer, Berlin/Heidelberg.10.1007/BFb0008861
  21. Poznyak, A.S. (2008). Advanced Mathematical Tools for Automatic Control Engineers, Vol. 1: Deterministic Techniques, Elsevier, Amsterdam.10.1016/B978-008044674-5.50004-3
  22. Rockafellar, R.T. (1970). Convex Analysis, Princeton University Press, Princeton.
  23. Semyonov, A.V., Vladimirov, I.G. and Kurdyukov, A.P. (1994). Stochastic approach to H-optimization, 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, pp. 2249–2250.
  24. Tchaikovsky, M.M. and Timin, V.N. (2017). Synthesis of anisotropic suboptimal control for linear time-varying systems on finite time horizon, Automation and Remote Control78(7): 1203–1217.10.1134/S0005117917070037
  25. Timin, V.N. and Kurdyukov, A.P. (2015). Anisotropy-based multicriteria time-varying filtering on finite horizon, Dok-lady Mathematics92(2): 638–642.10.1134/S1064562415050142
  26. Timin, V.N. and Kurdyukov, A.P. (2016). Suboptimal anisotropic filtering in a finite horizon, Automation and Remote Control77(1): 1–20.10.1134/S000511791601001X
  27. Vladimirov, I.G., Kurdyukov, A.P., Maksimov, E.A. and Timin, V.N. (2005). Anisotropy-based control theory—the new approach to stochastic robust control theory, 4th International Conference on System Identification and Control Problems, SICPRO’05, Moscow, Russia, pp. 29–94.
  28. Yurchenkov, A.V., Kustov, A. Yu. and Kurdyukov, A.P. (2016). Anisotropy-based bounded real lemma for discrete-time systems with multiplicative noise, Doklady Mathematics93(2): 1–3.10.1134/S1064562416020204
  29. Zhou, K., Doyle, J.C. and Glover, K. (1996). Robust and Optimal Control, Prentice Hall, Englewood Cliffs, NJ.
  30. Zhou, K., Glover, K., Bodenheimer, B. and Doyle, J. (1994). Mixed ℋ2 and ℋ performance objectives. I: Robust performance analysis, IEEE Transactions on Automatic Control39(8): 1564–1574.10.1109/9.310030
DOI: https://doi.org/10.2478/amcs-2019-0049 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 667 - 679
Submitted on: Jan 3, 2019
Accepted on: Aug 21, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Alexander P. Kurdyukov, Victor A. Boichenko, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.