Have a personal or library account? Click to login
PI Observer Design for a Class of Nondifferentially Flat Systems Cover
Open Access
|Dec 2019

References

  1. Boutayeb, M., Darouach, M. and Rafaralahy, H. (2002). Generalized state-space for chaotic synchronization and secure communication, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications49(3): 345–349.10.1109/81.989169
  2. Claude, D., Fliess, M. and Isidori, A. (1983). Immersion directe et par bouclage d’un système non linéaire dans un linéaire, Comptes Rendus Des Seances De L’Academie Des Sciences296(I): 237–240.
  3. Corless, M. and Leitmann, G. (1981). Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems, IEEE Transactions on Automatic Control26(5): 1139–1144.10.1109/TAC.1981.1102785
  4. Gauthier, J.P., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on Automatic Control37(6): 875–880.10.1109/9.256352
  5. Gensior, A., Woywode, O., Rudolph, J. and Guldner, H. (2006). On differential flatness, trajectory planning, observers, and stabilization for dc-dc converters, IEEE Transactions on Circuits and Systems I: Regular Papers53(9): 2000–2010.10.1109/TCSI.2006.880342
  6. Karagiannis, D., Astolfi, A. and Ortega, R. (2005). Nonlinear stabilization via system immersion and manifold invariance: Survey and new results, Multiscale Modeling & Simulation3(4): 801–817.10.1137/040603188
  7. Kolchin, E.R. (1973). Differential Algebra and Algebraic Groups, Academic Press, New York City, NY.
  8. Layek, G. (2015). An Introduction to Dynamical Systems and Chaos, Springer, New York City, NY.10.1007/978-81-322-2556-0
  9. Martínez-Guerra, R. and Cruz-Ancona, C.D. (2017). Algorithms of Estimation for Nonlinear Systems, Springer, New York City, NY.10.1007/978-3-319-53040-6
  10. Martínez-Guerra, R., Cruz-Victoria, J., Gonzalez-Galan, R. and Aguilar-Lopez, R. (2006). A new reduced-order observer design for the synchronization of Lorenz systems, Chaos, Solitons & Fractals28(2): 511–517.10.1016/j.chaos.2005.07.011
  11. Martinez-Guerra, R. and Flores-Flores, J.P. (2018). Synchronization for a class of nondifferentially flat chaotic systems by means of a PI observer, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, pp. 1–5, paper 25.10.1109/ICEEE.2018.8533973
  12. Martínez-Guerra, R., Gómez-Cortés, G. and Pérez-Pinacho, C. (2015). Synchronization of Integral and Fractional Order Chaotic Systems: A Differential Algebraic and Differential Geometric Approach with Selected Applications in Real-Time, Springer, New York City, NY.10.1007/978-3-319-15284-4
  13. Martínez-Guerra, R., González-Galan, R., Luviano-Juárez, A. and Cruz-Victoria, J. (2007). Diagnosis for a class of non-differentially flat and Liouvillian systems, IMA Journal of Mathematical Control and Information24(2): 177–195.10.1093/imamci/dnl014
  14. Martinez-Guerra, R. and Mendoza-Camargo, J. (2004). Observers for a class of Liouvillian and non-differentially flat systems, IMA Journal of Mathematical Control and Information21(4): 493–509.10.1093/imamci/21.4.493
  15. Martínez-Guerra, R. and Pérez-Pinacho, C.A. (2018). Advances in Synchronization of Coupled Fractional Order Systems: Fundamentals and Methods, Springer, New York City, NY.10.1007/978-3-319-93946-9
  16. Nijmeijer, H. and Mareels, I.M. (1997). An observer looks at synchronization, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications44(10): 882–890.10.1109/81.633877
  17. Pecora, L.M. and Carroll, T.L. (1990). Synchronization in chaotic systems, Physical Review Letters64: 821–824.10.1103/PhysRevLett.64.82110042089
  18. Pledgie, S.T., Hao, Y., Ferreira, A.M., Agrawal, S.K. and Murphey, R. (2002). Groups of unmanned vehicles: Differential flatness, trajectory planning, and control, IEEE International Conference on Robotics and Automation, ICRA’02, Washington, DC, USA, pp. 3461–3466.
  19. Ritt, J.F. (1950). Differential Algebra, American Mathematical Society, New York City, NY.10.1090/coll/033
  20. Sira-Ramirez, H. (2002). A flatness based generalized PI control approach to liquid sloshing regulation in a moving container, American Control Conference, Anchorage, AK, USA, pp. 2909–2914.10.1109/ACC.2002.1025232
DOI: https://doi.org/10.2478/amcs-2019-0048 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 655 - 665
Submitted on: Nov 30, 2018
Accepted on: Jul 29, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Juan Pablo Flores-Flores, Rafael Martinez-Guerra, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.