Boutayeb, M., Darouach, M. and Rafaralahy, H. (2002). Generalized state-space for chaotic synchronization and secure communication, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications49(3): 345–349.10.1109/81.989169
Claude, D., Fliess, M. and Isidori, A. (1983). Immersion directe et par bouclage d’un système non linéaire dans un linéaire, Comptes Rendus Des Seances De L’Academie Des Sciences296(I): 237–240.
Corless, M. and Leitmann, G. (1981). Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems, IEEE Transactions on Automatic Control26(5): 1139–1144.10.1109/TAC.1981.1102785
Gauthier, J.P., Hammouri, H. and Othman, S. (1992). A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on Automatic Control37(6): 875–880.10.1109/9.256352
Gensior, A., Woywode, O., Rudolph, J. and Guldner, H. (2006). On differential flatness, trajectory planning, observers, and stabilization for dc-dc converters, IEEE Transactions on Circuits and Systems I: Regular Papers53(9): 2000–2010.10.1109/TCSI.2006.880342
Karagiannis, D., Astolfi, A. and Ortega, R. (2005). Nonlinear stabilization via system immersion and manifold invariance: Survey and new results, Multiscale Modeling & Simulation3(4): 801–817.10.1137/040603188
Martínez-Guerra, R. and Cruz-Ancona, C.D. (2017). Algorithms of Estimation for Nonlinear Systems, Springer, New York City, NY.10.1007/978-3-319-53040-6
Martínez-Guerra, R., Cruz-Victoria, J., Gonzalez-Galan, R. and Aguilar-Lopez, R. (2006). A new reduced-order observer design for the synchronization of Lorenz systems, Chaos, Solitons & Fractals28(2): 511–517.10.1016/j.chaos.2005.07.011
Martinez-Guerra, R. and Flores-Flores, J.P. (2018). Synchronization for a class of nondifferentially flat chaotic systems by means of a PI observer, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, pp. 1–5, paper 25.10.1109/ICEEE.2018.8533973
Martínez-Guerra, R., Gómez-Cortés, G. and Pérez-Pinacho, C. (2015). Synchronization of Integral and Fractional Order Chaotic Systems: A Differential Algebraic and Differential Geometric Approach with Selected Applications in Real-Time, Springer, New York City, NY.10.1007/978-3-319-15284-4
Martínez-Guerra, R., González-Galan, R., Luviano-Juárez, A. and Cruz-Victoria, J. (2007). Diagnosis for a class of non-differentially flat and Liouvillian systems, IMA Journal of Mathematical Control and Information24(2): 177–195.10.1093/imamci/dnl014
Martinez-Guerra, R. and Mendoza-Camargo, J. (2004). Observers for a class of Liouvillian and non-differentially flat systems, IMA Journal of Mathematical Control and Information21(4): 493–509.10.1093/imamci/21.4.493
Martínez-Guerra, R. and Pérez-Pinacho, C.A. (2018). Advances in Synchronization of Coupled Fractional Order Systems: Fundamentals and Methods, Springer, New York City, NY.10.1007/978-3-319-93946-9
Nijmeijer, H. and Mareels, I.M. (1997). An observer looks at synchronization, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications44(10): 882–890.10.1109/81.633877
Pledgie, S.T., Hao, Y., Ferreira, A.M., Agrawal, S.K. and Murphey, R. (2002). Groups of unmanned vehicles: Differential flatness, trajectory planning, and control, IEEE International Conference on Robotics and Automation, ICRA’02, Washington, DC, USA, pp. 3461–3466.
Sira-Ramirez, H. (2002). A flatness based generalized PI control approach to liquid sloshing regulation in a moving container, American Control Conference, Anchorage, AK, USA, pp. 2909–2914.10.1109/ACC.2002.1025232