Al’brekht, E.G. (1961). On the optimal stabilization of nonlinear systems, Journal of Applied Mathematics and Mechanics25(5): 1254–1266.10.1016/0021-8928(61)90005-3
Aranda-Escolástico, E., Salt, J., Guinaldo, M., Chacón, J. and Dormido, S. (2018). Optimal control for aperiodic dual-rate systems with time-varying delays, Sensors18(5): 1–19.10.3390/s18051491598257529747441
Bemporad, A., Torrisit, F.D. and Morarit, M. (2000). Performance analysis of piecewise linear systems and model predictive control systems, IEEE Conference on Decision and Control, Sydney, NSW, Australia, pp. 4957–4962.
Boyd, S., El-Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.10.1137/1.9781611970777
Buhl, M. and Lohmann, B. (2009). Control with exponentially decaying Lyapunov functions and its use for systems with input saturation, European Control Conference, Budapest, Hungary, pp. 3148–3153.10.23919/ECC.2009.7074889
Darup, M.S. and Mönnigmann, M. (2013). Null-controllable set computation for a class of constrained bilinear systems, European Control Conference, Zürich, Switzerland, pp. 2758–2763.
Duda, J. (2012). A Lyapunov functional for a system with a time-varying delay, International Journal of Applied Mathematics and Computer Science22(2): 327–337, DOI: 10.2478/v10006-012-0024-7.10.2478/v10006-012-0024-7
Feyzmahdavian, H. R., Charalambous, T. and Johansson, M. (2013). On the rate of convergence of continuous-time linear positive systems with heterogeneous time-varying delays, European Control Conference, Zürich, Switzerland, pp. 3372–3377.10.23919/ECC.2013.6669345
Fu, J. (1993). Families of Lyapunov functions for nonlinear systems in critical cases, IEEE Transactions on Automatic Control38(1): 3–16.10.1109/9.186308
Grushkovskaya, V. and Zuyev, A. (2014). Optimal stabilization problem with minimax cost in a critical case, IEEE Transactions on Automatic Control59(9): 2512–2517.10.1109/TAC.2014.2304399
Hu, T., Lin, Z. and Shamash, Y. (2003). On maximizing the convergence rate for linear systems with input saturation, IEEE Transactions on Automatic Control48(7): 1249–1253.10.1109/TAC.2003.814271
Kaczorek, T. (2007). The choice of the forms of Lyapunov functions for a positive 2D Roesser model, International Journal of Applied Mathematics and Computer Science17(4): 471–475, DOI: 10.2478/v10006-007-0039-7.10.2478/v10006-007-0039-7
Lenka, B.K. (2019). Time-varying Lyapunov functions and Lyapunov stability of nonautonomous fractional order systems, International Journal of Applied Mathematics32(1): 111–130.10.12732/ijam.v32i1.11
Li, W., Huang, C. and Zhai, G. (2018). Quadratic performance analysis of switched affine time-varying systems, International Journal of Applied Mathematics and Computer Science28(3): 429–440, DOI: 10.2478/amcs-2018-0032.10.2478/amcs-2018-0032
Polyak, B. and Shcherbakov, P. (2009). Ellipsoidal approximations to attraction domains of linear systems with bounded control, Proceedings of the American Control Conference, St. Louis, MO, USA, pp. 5363–5367.10.1109/ACC.2009.5160175
Prieur, C., Tarbouriech, S. and Zaccarian, L. (2011). Improving the performance of linear systems by adding a hybrid loop, 18th IFAC World Congress, Milan, Italy, pp. 6301–6306.10.3182/20110828-6-IT-1002.02717
Scokaert, P. and Rawlings, J.B. (1998). Constrained linear quadratic regulation, IEEE Transactions on Automatic Control43(8): 1163–1169.10.1109/9.704994
Selek, I. and Ikonen, E. (2018). On the bounds of the fastest admissible decay of generalized energy in controlled LTI systems subject to state and input constraints, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE2018), Mexico City, Mexico, p. ID:19.10.1109/ICEEE.2018.8533983