Have a personal or library account? Click to login
Fundamental Limitations of the Decay of Generalized Energy in Controlled (Discrete–Time) Nonlinear Systems Subject to State and Input Constraints Cover

Fundamental Limitations of the Decay of Generalized Energy in Controlled (Discrete–Time) Nonlinear Systems Subject to State and Input Constraints

By: István Selek and  Enso Ikonen  
Open Access
|Dec 2019

References

  1. Al’brekht, E.G. (1961). On the optimal stabilization of nonlinear systems, Journal of Applied Mathematics and Mechanics25(5): 1254–1266.10.1016/0021-8928(61)90005-3
  2. Aranda-Escolástico, E., Salt, J., Guinaldo, M., Chacón, J. and Dormido, S. (2018). Optimal control for aperiodic dual-rate systems with time-varying delays, Sensors18(5): 1–19.10.3390/s18051491598257529747441
  3. Bemporad, A., Torrisit, F.D. and Morarit, M. (2000). Performance analysis of piecewise linear systems and model predictive control systems, IEEE Conference on Decision and Control, Sydney, NSW, Australia, pp. 4957–4962.
  4. Boyd, S., El-Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.10.1137/1.9781611970777
  5. Buhl, M. and Lohmann, B. (2009). Control with exponentially decaying Lyapunov functions and its use for systems with input saturation, European Control Conference, Budapest, Hungary, pp. 3148–3153.10.23919/ECC.2009.7074889
  6. Darup, M.S. and Mönnigmann, M. (2013). Null-controllable set computation for a class of constrained bilinear systems, European Control Conference, Zürich, Switzerland, pp. 2758–2763.
  7. Duda, J. (2012). A Lyapunov functional for a system with a time-varying delay, International Journal of Applied Mathematics and Computer Science22(2): 327–337, DOI: 10.2478/v10006-012-0024-7.10.2478/v10006-012-0024-7
  8. Feyzmahdavian, H. R., Charalambous, T. and Johansson, M. (2013). On the rate of convergence of continuous-time linear positive systems with heterogeneous time-varying delays, European Control Conference, Zürich, Switzerland, pp. 3372–3377.10.23919/ECC.2013.6669345
  9. Fu, J. (1993). Families of Lyapunov functions for nonlinear systems in critical cases, IEEE Transactions on Automatic Control38(1): 3–16.10.1109/9.186308
  10. Grushkovskaya, V. and Zuyev, A. (2014). Optimal stabilization problem with minimax cost in a critical case, IEEE Transactions on Automatic Control59(9): 2512–2517.10.1109/TAC.2014.2304399
  11. Hu, T., Lin, Z. and Shamash, Y. (2003). On maximizing the convergence rate for linear systems with input saturation, IEEE Transactions on Automatic Control48(7): 1249–1253.10.1109/TAC.2003.814271
  12. Kaczorek, T. (2007). The choice of the forms of Lyapunov functions for a positive 2D Roesser model, International Journal of Applied Mathematics and Computer Science17(4): 471–475, DOI: 10.2478/v10006-007-0039-7.10.2478/v10006-007-0039-7
  13. Lenka, B.K. (2019). Time-varying Lyapunov functions and Lyapunov stability of nonautonomous fractional order systems, International Journal of Applied Mathematics32(1): 111–130.10.12732/ijam.v32i1.11
  14. Li, W., Huang, C. and Zhai, G. (2018). Quadratic performance analysis of switched affine time-varying systems, International Journal of Applied Mathematics and Computer Science28(3): 429–440, DOI: 10.2478/amcs-2018-0032.10.2478/amcs-2018-0032
  15. Polyak, B. and Shcherbakov, P. (2009). Ellipsoidal approximations to attraction domains of linear systems with bounded control, Proceedings of the American Control Conference, St. Louis, MO, USA, pp. 5363–5367.10.1109/ACC.2009.5160175
  16. Prieur, C., Tarbouriech, S. and Zaccarian, L. (2011). Improving the performance of linear systems by adding a hybrid loop, 18th IFAC World Congress, Milan, Italy, pp. 6301–6306.10.3182/20110828-6-IT-1002.02717
  17. Scokaert, P. and Rawlings, J.B. (1998). Constrained linear quadratic regulation, IEEE Transactions on Automatic Control43(8): 1163–1169.10.1109/9.704994
  18. Selek, I. and Ikonen, E. (2018). On the bounds of the fastest admissible decay of generalized energy in controlled LTI systems subject to state and input constraints, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE2018), Mexico City, Mexico, p. ID:19.10.1109/ICEEE.2018.8533983
DOI: https://doi.org/10.2478/amcs-2019-0046 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 629 - 639
Submitted on: Nov 30, 2018
Accepted on: Jul 25, 2019
Published on: Dec 31, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 István Selek, Enso Ikonen, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.