Have a personal or library account? Click to login
Two–Stage Instrumental Variables Identification of Polynomial Wiener Systems with Invertible Nonlinearities Cover

Two–Stage Instrumental Variables Identification of Polynomial Wiener Systems with Invertible Nonlinearities

Open Access
|Sep 2019

References

  1. Al-Duwaish, H., Karim, M. and Chandrasekar, V. (1996). Use of multilayer feedforward neural networks in identification and control of Wiener model, IEE Proceedings: Control Theory and Applications143(3): 255–258, DOI: 10.1049/ip-cta:19960376.10.1049/ip-cta:19960376
  2. Aljamaan, I., Westwick, D., Foley, M. and Chandrasekar, V. (2016). Identification of Wiener models in the presence of ARIMA process noise, IFAC-PapersOnLine49(7): 1008–1013, DOI: 10.1016/j.ifacol.2016.07.334.10.1016/j.ifacol.2016.07.334
  3. Ase, H. and Katayama, T. (2015). A subspace-based identification of two-channel Wiener systems, Two-stage instrumental variables identification of polynomial Wiener systems. IFAC-PapersOnLine48(28): 638–643, DOI: 10.1016/j.ifacol.2015.12.201.10.1016/j.ifacol.2015.12.201
  4. Billings, S. and Fakhouri, S. (1978). Theory of separable processes with applications to the identification of nonlinear systems, Proceedings of the Institution of Electrical Engineers125(10): 1051–1058, DOI: 10.1049/piee.1978.0241.10.1049/piee.1978.0241
  5. Billings, S. and Fakhouri, S. (1982). Identification of systems containing linear dynamic and static nonlinear elements, Automatica18(1): 15–26, DOI: 0.1016/0005-1098(82)90022-X.10.1016/0005-1098(82)90022-X
  6. Bottegal, G., Castro-Garcia, R. and Suykens, J. (2017). On the identification of Wiener systems with polynomial nonlinearity, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, DOI: 10.1109/CDC.2017.8264635.10.1109/CDC.2017.8264635
  7. Boyd, S. and Chua, L.O. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Transactions on Circuits and Systems32(11): 1150–1161, DOI: 10.1109/TCS.1985.1085649.10.1109/TCS.1985.1085649
  8. Brouri, A. and Slassi, S. (2015). Frequency identification approach for Wiener systems, International Journal of Computational Engineering Research (IJCER)5(8): 12–16.
  9. Ding, F., Liu, X. and Liu, M. (2015). The recursive least squares identification algorithm for a class of Wiener nonlinear systems, Journal of the Franklin Institute353(7): 1518–1526, DOI: 10.1016/j.jfranklin.2016.02.013.10.1016/j.jfranklin.2016.02.013
  10. Dong, R., Tan, Q. and Tan, Y. (2009). Recursive identification algorithm for dynamic systems with output backlash and its convergence, International Journal of Applied Mathematics and Computer Science19(4): 631–638, DOI: 10.2478/v10006-009-0050-2.10.2478/v10006-009-0050-2
  11. Fan, D. and Lo, K. (2009). Identification for disturbed MIMO Wiener systems, Nonlinear Dynamics55(1): 31–42, DOI: 10.1007/s11071-008-9342-6.10.1007/s11071-008-9342-6
  12. Figueroa, J., Biagiola, S., Alvarez, M., Castro, L. and Agamennoni, O.E. (2013). Robust model predictive control of a Wiener-like system, Journal of the Franklin Institute350(3): 556–574, DOI: 10.1016/j.jfranklin.2012.12.016.10.1016/j.jfranklin.2012.12.016
  13. Giri, F., Radouane, A., Brouri, A. and Chaoui, F. (2014). Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators, Automatica50(3): 768–783, DOI: 10.1016/j.automatica.2013.12.030.10.1016/j.automatica.2013.12.030
  14. Gómez, M. and Baeyens, E. (2002). Subspace identification of multivariable Hammerstein and Wiener models, IFAC Proceedings Volumes35(1): 55–60, DOI: 10.3182/20020721-6-ES-1901.00420.10.3182/20020721-6-ES-1901.00420
  15. Gómez, M. and Baeyens, E. (2005). Subspace-based identification algorithms for Hammerstein and Wiener models, European Journal of Control11(2): 127–136, DOI: 10.3166/ejc.11.127-136.10.3166/ejc.11.127-136
  16. Greblicki, W. (1997). Nonparametric approach to Wiener system identification, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications44(6): 538–545, DOI: 10.1109/81.586027.10.1109/81.586027
  17. Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science11(4): 977–991.
  18. Ipanaqué, W. and Manrique, J. (2011). Identification and control of pH using optimal piecewise linear Wiener model, IFAC Proceedings Volumes44(41): 12301–12306, DOI: 10.3182/20110828-6-IT-1002.03695.10.3182/20110828-6-IT-1002.03695
  19. Janczak, A. (2005). Identification of Nonlinear Systems Using Neural Networks and Polynomial Models. A Block-Oriented Approach, Springer Verlag, Berlin/Heidelberg/New York,NY.10.1007/b98334
  20. Janczak, A. (2007). Instrumental variables approach to identification of a class of MIMO Wiener systems, Nonlinear Dynamics48(3): 275–284, DOI: 10.1007/s11071-006-9088-y.10.1007/s11071-006-9088-y
  21. Janczak, A. (2018). Least squares and instrumental variables identification of polynomial Wiener systems, 23rd International Conference on Methods and Models in Automation and Robotics (MMAR’2018), Miȩdzyzdroje, Poland, DOI: 10.1109/MMAR.2018.8486049.10.1109/MMAR.2018.8486049
  22. Jansson, D. and Medvedev, A. (2015). Identification of polynomial Wiener systems via Volterra–Laguerre series with model mismatch, IFAC-PapersOnLine48(11): 831–836, DOI: 10.1016/j.ifacol.2015.09.293.10.1016/j.ifacol.2015.09.293
  23. Kazemi, M. and Arefi, M. (2017). A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems, ISA Transactions67: 382–388, DOI: 10.1016/j.isatra.2016.12.002.10.1016/j.isatra.2016.12.00227989529
  24. Kim, K.-K., Rios-Patronc, E. and Braatz, R. (2012). Robust nonlinear internal model control of stable Wiener systems, Journal of Process Control22(8): 1468–1477, DOI: 10.1016/j.jprocont.2012.01.019.10.1016/j.jprocont.2012.01.019
  25. Ławryńczuk, M. (2013). Practical nonlinear predictive control algorithms for neural Wiener models, Journal of Process Control22(5): 696–714, DOI: 10.1016/j.jprocont.2013.02.004.10.1016/j.jprocont.2013.02.004
  26. Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linerisation and state estimation, International Journal of Applied Mathematics and Computer Science25(4): 833–847, DOI: 10.1515/amcs-2015-0060.10.1515/amcs-2015-0060
  27. Ławryńczuk, M. (2016). Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models, Neurocomputing205: 311–328, DOI: 10.1016/j.neucom.2016.03.066.10.1016/j.neucom.2016.03.066
  28. Mahataa, K., Schoukens, J. and Cock, A.D. (2016). Information matrix and D-optimal design with Gaussian inputs for Wiener model identification, Automatica69: 65–77, DOI: 10.1016/j.automatica.2016.02.026.10.1016/j.automatica.2016.02.026
  29. Rollins, D., Mei, Y., Loveland, S. and Bhandari, N. (2016). Block-oriented feedforward control with demonstration to nonlinear parameterized Wiener modeling, Chemical Engineering Research and Design109: 397–404, DOI: 10.1016/j.cherd.2016.02.016.10.1016/j.cherd.2016.02.016
  30. Schoukens, M. and Tiels, K. (2011). Parametric MIMO parallel Wiener identification, 2011 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, FL, USA, DOI: 10.1109/CDC.2011.6160230.10.1109/CDC.2011.6160230
  31. Schoukens, M. and Tiels, K. (2017). Identification of block-oriented nonlinear systems starting from linear approximations: A survey, Automatica85: 272–292, DOI: 10.1016/j.automatica.2017.06.044.10.1016/j.automatica.2017.06.044
  32. Stanisławski, R., Latawiec, K., Gałek, M. and Łukaniszyn, M. (2014). Modeling and identification of a fractional-order discrete-time SISO Laguerre–Wiener system, 19th International Conference on Methods and Models in Automation and Robotics (MMAR’2014), Miȩdzyzdroje, Poland, DOI: 10.1109/MMAR.2014.6957343.10.1109/MMAR.2014.6957343
  33. Tiels, K. and Schoukens, J. (2014). Wiener system identification with generalized orthonormal basis functions, Automatica50(12): 3147–3154, DOI: 10.1016/j.automatica.2014.10.010.10.1016/j.automatica.2014.10.010
  34. Van Vaerenbergh, S., Via, J. and Santamaria, I. (2013). Blind identification of SIMO Wiener systems based on kernel canonical correlation analysis, IEEE Transactions on Signal Processing61(9): 2219–2230, DOI: 10.1109/TSP.2013.2248004.10.1109/TSP.2013.2248004
  35. Vörös, J. (2007). Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Systems & Control Letters56(2): 99–105, DOI: 10.1016/j.sysconle.2006.08.001.10.1016/j.sysconle.2006.08.001
  36. Vörös, J. (2015). Identification of nonlinear cascade systems with output hysteresis based on the key term separation principle, Applied Mathematical Modelling39(18): 5531–5539, DOI: 10.1016/j.apm.2015.01.018.10.1016/j.apm.2015.01.018
  37. Westwick, D. and Verhaegen, M. (1996). Identifying MIMO Wiener systems using subspace model identification methods, Systems & Control Letters52(2): 235–258, DOI: 10.1016/0165-1684(96)00056-4.10.1016/0165-1684(96)00056-4
  38. Wigren, T. (1993). Recursive prediction error identification algorithm using the nonlinear Wiener model, Automatica29(4): 1011–1025, DOI: 10.1016/0005-1098(93)90103-Z.10.1016/0005-1098(93)90103-Z
  39. Xiong, W., Yang, X., Ke, L. and Xu, B. (2015). EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data, Nonlinear Dynamics80(1–2): 329–339, DOI: 10.1007/s11071-014-1871-6.10.1007/s11071-014-1871-6
  40. Yang, X., Xiong, W., Ma, J. and Wang, Z. (2017). Robust identification of Wiener time-delay system with expectation-maximization algorithm, Journal of the Franklin Institute354(13): 5678–5693, DOI: 10.1016/j.jfranklin.2017.05.023.10.1016/j.jfranklin.2017.05.023
  41. Zhou, L., Li, X. and Pan, F. (2013). Gradient based iterative parameter identification for Wiener nonlinear systems, Applied Mathematical Modelling37(16–17): 8203–8209, DOI: 10.1016/j.apm.2013.03.005.10.1016/j.apm.2013.03.005
DOI: https://doi.org/10.2478/amcs-2019-0042 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 571 - 580
Submitted on: Dec 13, 2018
Accepted on: Apr 10, 2019
Published on: Sep 28, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Andrzej Janczak, Józef Korbicz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.