Have a personal or library account? Click to login
Realization of 2D (2,2)–Periodic Encoders by Means of 2D Periodic Separable Roesser Models Cover

Realization of 2D (2,2)–Periodic Encoders by Means of 2D Periodic Separable Roesser Models

Open Access
|Sep 2019

References

  1. Aleixo, J.C. and Rocha, P. (2017). Roesser model representation of 2D periodic behaviors: The (2,2)-periodic SISO case, 10th International Workshop on Multidimensional (nD) Systems (nDS), Zielona Góra, Poland, pp. 1–6.10.1109/NDS.2017.8070617
  2. Aleixo, J.C. and Rocha, P. (2018). On the state space realization of separable periodic 2D systems, 2018 European Control Conference, Limassol, Cyprus, pp. 2300–2305.10.23919/ECC.2018.8550553
  3. Aleixo, J.C., Rocha, P. and Willems, J.C. (2011). State space representation of SISO periodic behaviors, 2011 50th IEEE Conference on Decision and Control/European Control Conference, Orlando, FL, USA, pp. 1545–1550.10.1109/CDC.2011.6160552
  4. Basu, S. and Swamy, M.N.S. (2002). Editorial preface to special issue on multidimensional signals and systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications49(6): 709–714.10.1109/TCSI.2002.1010026
  5. Charoenlarpnopparut, C. and Bose, N. (2001). Grobner bases for problem solving in multidimensional systems, Multidimensional Systems and Signal Processing12(3): 365–376.10.1023/A:1011965825246
  6. Climent, J.-J., Herranz, V., Perea, C. and Tomás, V. (2009). A systems theory approach to periodically time-varying convolutional codes by means of their invariant equivalent, in M. Bras-Amorós and T. Høholdt (Eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, Berlin/Heidelberg, pp. 73–82.10.1007/978-3-642-02181-7_8
  7. Costello, D.J. (1974). Free distance bounds for convolutional codes, IEEE Transactions on Information Theory20(3): 356–365.10.1109/TIT.1974.1055223
  8. Felstrom, A.J. and Zigangirov, K.S. (1999). Time-varying periodic convolutional codes with low-density parity-check matrix, IEEE Transactions on Information Theory45(6): 2181–2191.10.1109/18.782171
  9. Fornasini, E., Pinho, T., Pinto, R. and Rocha, P. (2015). Minimal realizations of syndrome formers of a special class of 2D codes, in R. Pinto et al. (Eds), Coding Theory and Applications, Springer International Publishing, Cham, pp. 185–193.10.1007/978-3-319-17296-5_19
  10. Fornasini, E. and Pinto, R. (2004). Matrix fraction descriptions in convolutional coding, Linear Algebra and Its Applications392(C): 119–158.10.1016/j.laa.2004.06.007
  11. Fornasini, E. and Valcher, M. (1994). Algebraic aspects of two-dimensional convolutional codes, IEEE Transactions on Information Theory40(4): 1068–1082.10.1109/18.335967
  12. Fornasini, E. and Valcher, M. (1998). Multidimensional systems with finite support behaviors: Signal structure, generation and detection, SIAM Journal on Control and Optimization36(2): 760–779.10.1137/S0363012995292044
  13. Galkowski, K. (1996). The Fornasini–Marchesini and the Roesser models: Algebraic methods for recasting, IEEE Transactions on Automatic Control41(1): 107–112.10.1109/9.481611
  14. Galkowski, K. (2001). State-Space Realisations of Linear 2-D Systems with Extensions to the General nD (n > 2) Case, Vol. 263, Lecture Notes in Control and Information Sciences, Springer, London.
  15. Gluesing-Luersen, H., Rosenthal, J. and Weiner, P. (2000). Duality between mutidimensinal convolutional codes and systems, in F. Colonius et al. (Eds), Advances in Mathematical Systems Theory: A Volume in Honor of Diedrich Hinrichsen, Birkhauser, Boston, MA, pp. 135–150.10.1007/978-1-4612-0179-3_8
  16. Gluesing-Luerssen, H. and Schneider, G. (2007). State space realizations and monomial equivalence for convolutional codes, Linear Algebra and Its Applications425(2): 518–533.10.1016/j.laa.2007.03.004
  17. Guardia, G.G.L. (2019). Asymptotically good convolutional codes, Linear and Multilinear Algebra67(7): 1483–1494.10.1080/03081087.2018.1459448
  18. Hinamoto, T. (1980). Realizations of a state-space model from two-dimensional input-output map, IEEE Transactions on Circuits and Systems27(1): 36–44.10.1109/TCS.1980.1084713
  19. Jangisarakul, P. and Charoenlarpnopparut, C. (2011). Algebraic decoder of multidimensional convolutional code: Constructive algorithms for determining syndrome decoder and decoder matrix based on Grobner basis, Multidimensional Systems and Signal Processing22(1): 67–81.10.1007/s11045-010-0139-7
  20. Kaczorek, T. (2001). Elimination of finite eigenvalues of the 2D Roesser model by state feedbacks, International Journal of Applied Mathematics and Computer Science11(2): 369–376.
  21. Kailath, T. (1980). Linear Systems, Prentice-Hall, Englewood Cliffs, NJ.
  22. Kuijper, M. and Polderman, J. (2004). Reed–Solomon list decoding from a system theoretic perspective, IEEE Transactions on Information TheoryIT-50(2): 259–271.10.1109/TIT.2003.822593
  23. Kuijper, M. and Willems, J.C. (1997). A behavioral framework for periodically time varying systems, Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, Vol. 3, pp. 2013–2016.
  24. Lobo, R., Bitzer, D.L. and Vouk, M.A. (2012). On locally invertible encoders and multidimensional convolutional codes, IEEE Transactions on Information Theory58(3): 1774–1782.10.1109/TIT.2011.2178129
  25. Mooser, M. (1983). Some periodic convolutional codes better than any fixed code (corresp.), IEEE Transactions on Information Theory29(5): 750–751.10.1109/TIT.1983.1056727
  26. Napp, D., Perea, C. and Pinto, R. (2010). Input-state-output representations and constructions of finite support 2D convolutional codes, Advances in Mathematics of Communications4(4): 533–545.10.3934/amc.2010.4.533
  27. Napp, D., Pereira, R., Pinto, R. and Rocha, P. (2019). Periodic state-space representations of periodic convolutional codes, Cryptography and Communications11(4): 585–595.10.1007/s12095-018-0313-6
  28. Palazzo, R. (1993). A time-varying convolutional encoder better than the best time-invariant encoder, IEEE Transactions on Information Theory39(3): 1109–1110.10.1109/18.256526
  29. Pinho, T. (2016). Minimal State-Space Realizations of 2D Convolutional Codes, PhD thesis, University of Aveiro, Aveiro.10.1007/978-3-319-10380-8_2
  30. Pinho, T., Pinto, R. and Rocha, P. (2014). Realization of 2D convolutional codes of rate 1/n by separable Roesser models, Designs, Codes and Cryptography70(1): 241–250.10.1007/s10623-012-9768-1
  31. Rosenthal, J. (2001). Connections between linear systems and convolutional codes, in B. Marcus and J. Rosenthal (Eds), Codes, Systems and Graphical Models, Springer-Verlag, New York, NY, pp. 39–66.10.1007/978-1-4613-0165-3_2
  32. Rosenthal, J. and York, E.V. (1999). BCH convolutional codes, IEEE Transactions on Automatic Control45(6): 1833–1844.10.1109/18.782104
  33. Valcher, M. and Fornasini, E. (1994). On 2D finite support convolutional codes: An algebraic approach, Multidimensional Systems and Signal Processing5(3): 231–243.10.1007/BF00980707
  34. Weiner, P. (1998). Multidimensional Convolutional Codes, PhD dissertation, University of Notre Dame, South Bend, IN.
  35. Zerz, E. (2000). Topics in Multidimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 256, Springer-Verlag, London.
DOI: https://doi.org/10.2478/amcs-2019-0039 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 527 - 539
Submitted on: Nov 29, 2018
Accepted on: Mar 31, 2019
Published on: Sep 28, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Diego Napp, Ricardo Pereira, Raquel Pinto, Paula Rocha, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.