Have a personal or library account? Click to login
A Three–Level Aggregation Model for Evaluating Software Usability by Fuzzy Logic Cover

A Three–Level Aggregation Model for Evaluating Software Usability by Fuzzy Logic

By: Eva Rakovská and  Miroslav Hudec  
Open Access
|Sep 2019

References

  1. Albert, W. and Tullis, T. (2013). Measuring the User Experience, Collecting, Analyzing, and Presenting Usability Metrics (Interactive Technologies), 2nd Edition, Elsevier, Amsterdam.
  2. Allen, I.E. and Seaman, C. (2007). Likert scales and data analyses, Technical report, QP-Quality Progress, http://asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html.
  3. Bavdaž, M. (2010). Sources of measurement errors in business surveys, Journal of Official Statistics26(1): 25–42.
  4. Bavdaž, M., Biffignandi, S., Bolko, I., Giesen, D., Gravem, D. and Haraldsen, G. (2011). Final report integrating findings on business perspectives related to NSIS’ statistics, Technical report, Deliverable 3.2., FP7 Blue-Ets Project, European Commission, Brussels, https://cordis.europa.eu/project/rcn/94081/results/en?rcn=143042.
  5. Beliakov, G., Pradera, A. and Calvo, T. (2007). Aggregation Functions: A Guide for Practitioners, Springer-Verlag, Berlin/Heidelberg.
  6. Calinescu, M. and Schouten, B. (2012). Adaptive survey designs that minimize nonresponse and measurement risk, Technical report, Statistics Netherlands, The Hague/Heerlen.
  7. Calvo, T., Kolesárová, A., Komorníková, M. and Mesiar, R. (2002). Aggregation operators: Properties, classes and construction methods, in T. Calvo et al. (Eds), Aggregation Operators: New Trends and Applications, Physica, Heidelberg, pp. 3–104.10.1007/978-3-7908-1787-4_1
  8. Dubois, D. and Prade, H. (2004). On the use of aggregation operations in information fusion processes, Fuzzy Sets and Systems142(1): 143–161.10.1016/j.fss.2003.10.038
  9. Dujmović, J. (2007). Continuous preference logic for system evaluation, IEEE Transactions on Fuzzy Systems15(6): 1082–1099.10.1109/TFUZZ.2007.902041
  10. Dujmović, J. (2018). Soft Computing Evaluation Logic: The LSP Decision Method and Its Applications, Wiley/IEEE Computer Society, Hoboken, NJ.10.1002/9781119256489
  11. Grabisch, M., Marichal, J.-L., Mesiar, R. and Pap, E. (2009). Aggregation Functions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge.10.1017/CBO9781139644150
  12. Greiner, L. and White, S. (2019). What is ITIL? Your guide to the it infrastructure library, in digital magazine CIO from IDG, https://www.cio.com/article/2439501/infrastructure-it-infrastructure-library-itil-definition-and-solutions.html.
  13. Gupta, M. and Qi, J. (1991). Theory of t-norms and fuzzy inference methods, Fuzzy Sets and Systems40(3): 431–450.10.1016/0165-0114(91)90171-L
  14. Hensher, A., Rose, J. and Greene, W. (2015). Applied Choice Analysis, Cambridge University Press, Cambridge.10.1017/CBO9781316136232
  15. Herrera, F. and Martínez, L. (2001). A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multiexpert decision-making, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics31(2): 227–234.10.1109/3477.91534518244784
  16. ISACA (2018). Service it governance professionals, COBIT5, an ISACA framework, http://www.isaca.org/cobit/pages/default.aspx.
  17. ISO (2011). Systems and software engineering, ISO/IEC 25010:2011: Systems and software quality requirements and evaluation (square). System and software quality models, https://www.iso.org/standard/35733.html.
  18. ISO (2018). ISO, online browsing platform, ISO 9241-11:2018: Ergonomics of human–system interaction. Part 11: Usability: Definitions and concepts, https://www.iso.org/standard/63500.html.
  19. Kacprzyk, J. and Yager, R. (2001). Linguistic summaries of data using fuzzy logic, International Journal of General Systems30(2): 133–154.10.1080/03081070108960702
  20. Kacprzyk, J., Yager, R.R. and Zadrożny S. (2000). A fuzzy logic based approach to linguistic summaries of databases, International Journal of Applied Mathematics and Computer Science10(4): 813–834.
  21. Králiková, L. (2017). Testovanie efektívnosti softvéru v podnikovej praxi z hľadiska užívateľov (Software Effectiveness Testing in Business Practice from a User Perspective), Master thesis, University of Economics in Bratislava, Bratislava.
  22. Likert, R. (1932). A technique for the measurement of attitudes, Archives of Psychology22(140): 1–55.
  23. Miller, G. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information, Psychological Review63(2): 81–97.10.1037/h0043158
  24. Morente-Molinera, J., Kou, G., Pérez, I., Samuylov, K., Selamat, A. and Herrera-Viedma, E. (2018). A group decision making support system for the web: How to work in environments with a high number of participants and alternatives, Applied Soft Computing68: 191–201.10.1016/j.asoc.2018.03.047
  25. Olson, D. (1996). Decision Aids for Selection Problems, Springer-Verlag, London.10.1007/978-1-4612-3982-6
  26. Pavlík, L. (2018). Metrics for evaluating information systems, Posterus, Portl pre odborn publikovanie, http://www.posterus.sk/?p=18957.
  27. Piegat, A. and Pluciński, M. (2015). Computing with words with the use of inverse RDM models of membership functions, International Journal of Applied Mathematics and Computer Science25(3): 675–688, DOI:10.1515/amcs-2015-0049.10.1515/amcs-2015-0049
  28. Rakovská, E. and Hudec, M. (2020). Two approaches for the computational model for soft-ware usability in practice, in J. Kacprzyk et al. (Eds), Information Technology, System Research and Computational Physics, ITSRCP 2018, Advances in Intelligent Systems and Computing, Vol. 945, Springer, Cham, pp. 191–202.10.1007/978-3-030-18058-4_15
  29. Ruspini, E. (1969). A new approach to clustering, Information and Control15(1): 22–32.10.1016/S0019-9958(69)90591-9
  30. Seffah, A., Kececi, N. and Donyaee, M. (2001). QUIM: A framework for quantifying usability metrics in software quality models, 2nd Asia-Pacific Conference on Quality Software, Hong Kong, pp. 311–318.
  31. Snijkers, G., Haraldsen, G., Jones, J. and Willimack, D. (2013). Designing and Conducting Business Surveys, Wiley, Hoboken, NJ.10.1002/9781118447895
  32. Tudorie, C. (2008). Qualifying objects in classical relational database querying, in J. Galindo (Ed.), Handbook of Research on Fuzzy Information Processing in Databases, Information Science Reference, Hershey, pp. 218–245.10.4018/978-1-59904-853-6.ch009
  33. Yager, R. (1982). A new approach to the summarization of data, Information Sciences28(1): 69–86.10.1016/0020-0255(82)90033-0
  34. Yager, R. and Rybalov, A. (1996). Uninorm aggregation operators, Fuzzy Sets and Systems80(1): 111–120.10.1016/0165-0114(95)00133-6
  35. Zadeh, L. (1965). Fuzzy sets, Information and Control8(3): 338–353.10.1016/S0019-9958(65)90241-X
  36. Zimmermann, H. (2001). Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, Dordrecht.10.1007/978-94-010-0646-0
DOI: https://doi.org/10.2478/amcs-2019-0036 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 489 - 501
Submitted on: Oct 20, 2018
Accepted on: Jul 3, 2019
Published on: Sep 28, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Eva Rakovská, Miroslav Hudec, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.