Have a personal or library account? Click to login
A Hybrid Cascade Neuro–Fuzzy Network with Pools of Extended Neo–Fuzzy Neurons and its Deep Learning Cover

A Hybrid Cascade Neuro–Fuzzy Network with Pools of Extended Neo–Fuzzy Neurons and its Deep Learning

Open Access
|Sep 2019

References

  1. Aggarwal, C. (2015). A Data Mining: The Textbook, Springer, New York, NY.10.1007/978-3-319-14142-8
  2. Arrow, K., Hurwicz, L. and Uzawa, H. (1958). Iterative methods for concave programming, Studies in Linear and Nonlinear Programming6: 154–165.
  3. Bifet, A., Gavald, R., Holmes, G. and Pfahringer, B. (2018). Machine Learning for Data Streams with Practical Examples in MOA, MIT Press, Cambridge, MA.10.7551/mitpress/10654.001.0001
  4. Bodyanskiy, Y.V. and Boryachok, M.D. (1993). Optimal Control of Stochastic Objects Under Conditions of Uncertainty, ISDO, Kyiv.
  5. Bodyanskiy, Y.V., Tyshchenko, A. and Deineko, A. (2015a). An evolving radial basis neural network with adaptive learning of its parameters and architecture, Automatic Control and Computer Sciences49(5): 255–260.10.3103/S0146411615050028
  6. Bodyanskiy, Y., Tyshchenko, O. and Kopaliani, D. (2015b). A hybrid cascade neural network with an optimized pool in each cascade, Soft Computing19(12): 3445–3454.10.1007/s00500-014-1344-3
  7. Bodyanskiy, Y.V., Tyshchenko, O.K. and Kopaliani, D.S. (2016). Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks, Evolving Systems7(2): 107–116.10.1007/s12530-016-9149-5
  8. Bodyanskiy, Y.V. and Tyshchenko, O.K. (2018). A hybrid cascade neural network with ensembles of extended neo-fuzzy neurons and its deep learning, in P. Kulczycki et al. (Eds), Contemporary Computational Science, AGH-UCT Press, Cracow, p. 76.
  9. Bodyanskiy, Y.V. and Tyshchenko, O.K. (2020). A hybrid cascade neural network with ensembles of extended neo-fuzzy neurons and its deep learning, in P. Kulczycki et al. (Eds), Information Technology, Systems Research and Computational Physics, Springer International Publishing, Cham, pp. 164–174.10.1007/978-3-030-18058-4_13
  10. Caminhas, W.M., Lemos, A.P. and Gomide, F. (2011). Multivariable Gaussian evolving fuzzy modeling system, IEEE Transactions on Fuzzy Systems19(1): 91–104.10.1109/TFUZZ.2010.2087381
  11. Delen, D. (2015). Real-World Data Mining: Applied Business Analytics and Decision Making, Pearson FT Press, New York, NY.
  12. Fahlman, S.E. and Lebiere, C. (1990). The cascade-correlation learning architecture, in D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems, Morgan Kaufman, San Mateo, CA, pp. 524–532.
  13. Gama, J. (2010). Knowledge Discovery from Data Streams, Chapman and Hall/CRC, Boca Raton, FL.10.1201/EBK1439826119
  14. Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning, MIT Press, Cambridge, MA.
  15. Hanrahan, G. (2011). Artificial Neural Networks in Biological and Environmental Analysis, CRC Press, Boca Raton, FL.10.1201/b10515
  16. Haykin, S. (2009). Neural Networks and Learning Machines, Prentice-Hall, Upper Saddle River, NJ.
  17. Hu, Z., Bodyanskiy, Y.V. and Tyshchenko, O.K. (2017). A deep cascade neural network based on extended neo-fuzzy neurons and its adaptive learning algorithm, Proceedings of 2017 IEEE 1st Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, pp. 801–805.10.1109/UKRCON.2017.8100357
  18. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K. and Boiko, O.O. (2016). An evolving cascade system based on a set of neo-fuzzy nodes, International Journal of Intelligent Systems and Applications8(9): 1–7.10.5815/ijisa.2016.09.01
  19. Jang, J.-S.R., Sun, C.T. and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, Upper Saddle River, NJ.10.1109/TAC.1997.633847
  20. Jaworski, M. (2018). Regression function and noise variance tracking methods for data streams with concept drift, International Journal of Applied Mathematics and Computer Science28(3): 559–567, DOI: 10.2478/amcs-2018-0043.10.2478/amcs-2018-0043
  21. Kaczmarz, S. (1937). Angenherte auflsung von systemen linearer gleichungen, Bulletin International de l’Acadmie Polonaise des Sciences et des LettresSerie A(35): 355–357.
  22. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M. and Held, P. (2013). Computational Intelligence: A Methodological Introduction, Springer-Verlag, Berlin.10.1007/978-1-4471-5013-8
  23. Larose, D. (2014). Discovering Knowledge in Data: An Introduction to Data Mining, Wiley, New York, NY.10.1002/9781118874059
  24. Menshawy, A. (2018). Deep Learning By Example: A Hands-on Guide to Implementing Advanced Machine Learning Algorithms and Neural Networks, Packt Publishing Limited, Birmingham.
  25. Miki, T. and Yamakawa, T. (1999). Analog implementation of neo-fuzzy neuron and its on-board learning, in N.E. Mastorakis (Ed.), Computational Intelligence and Applications, WSES Press, Piraeus, pp. 144–149.
  26. Mumford, C. and Jain, L. (2009). Computational Intelligence, Springer-Verlag, Berlin.10.1007/978-3-642-01799-5
  27. Otto, P., Bodyanskiy, Y. and Kolodyazhniy, V. (2003). A new learning algorithm for a forecasting neuro-fuzzy network, Integrated Computer-Aided Engineering10(4): 399–409.10.3233/ICA-2003-10409
  28. Silva, A.M., Caminhas, W.M., Lemos, A.P. and Gomide, F. (2013). Evolving neo-fuzzy neural network with adaptive feature selection, 2013 BRICS Congress on Computational Intelligence/11th Brazilian Congress on Computational Intelligence, Ipojuca, Brazil, pp. 341–349.10.1109/BRICS-CCI-CBIC.2013.64
  29. Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science27(4): 669–679, DOI: 10.1515/amcs-2017-0046.10.1515/amcs-2017-0046
  30. Suzuki, K. (2013). Artificial Neural Networks: Architectures and Applications, InTech, New York, NY.10.5772/3409
  31. Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man, and CyberneticsSMC-15(1): 116–132.10.1109/TSMC.1985.6313399
  32. Uchino, E. and Yamakawa, T. (1997). Soft computing based signal prediction, restoration and filtering, in N.E. Mastorakis (Ed.), Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks and Genetic Algorithms, Kluwer Academic Publisher, Boston, MA, pp. 331–349.10.1007/978-1-4615-6191-0_14
  33. Wang, L. (1994). Adaptive Fuzzy Systems and Control. Design and Stability Analysis, Prentice-Hall, Upper Saddle River, NJ.
  34. Wang, L. and Mendel, J.M. (1993). Fuzzy basis functions, universal approximation and orthogonal least squares learning, IEEE Transactions on Neural Networks3(5): 807–814.10.1109/72.15907018276480
  35. Yamakawa, T., Uchino, E., Miki, T. and Kusanagi, H. (1992). A neo fuzzy neuron and its applications to system identification and prediction of the system behavior, Proceedings of the 2nd International Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan, pp. 477–483.
DOI: https://doi.org/10.2478/amcs-2019-0035 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 477 - 488
Submitted on: Oct 22, 2018
Accepted on: Jul 3, 2019
Published on: Sep 28, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.