Have a personal or library account? Click to login
Efficient Astronomical Data Condensation Using Approximate Nearest Neighbors Cover

References

  1. Abraham, S., Philip, N.S., Kembhavi, A., Wadadekar, Y.G. and Sinha, R. (2012). A photometric catalogue of quasars and other point sources in the Sloan Digital Sky Survey, Monthly Notices of the Royal Astronomical Society419(1): 80–94, DOI: 10.1111/j.1365-2966.2011.19674.x.10.1111/j.1365-2966.2011.19674.x
  2. Arefin, A.S., Riveros, C., Berretta, R. and Moscato, P. (2012). GPU-FS-kNN: A software tool for fast and scalable kNN computation using GPUs, PLoS One7: e44000, DOI: 10.1371/journal.pone.0044000.10.1371/journal.pone.0044000
  3. Breunig, M.M., Kriegel, H.-P., Ng, R.T. and Sander, J. (2000). LOF: Identifying density-based local outliers, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD’00, Dallas, TX, USA, pp. 93–104, DOI: 10.1145/342009.335388.10.1145/342009.335388
  4. Bubeck, S. and von Luxburg, U. (2009). Nearest neighbor clustering: A baseline method for consistent clustering with arbitrary objective functions, Journal of Machine Learning Research10: 657–698.
  5. Burgess, R., Falcão, A.J., Fernandes, T., Ribeiro, R.A., Gomes, M., Krone-Martins, A. and de Almeida, A.M. (2015). Selection of large-scale 3d point cloud data using gesture recognition, in L. Camarinha-Matos et al. (Eds), Technological Innovation for Cloud-Based Engineering Systems, Springer International Publishing, Cham, pp. 188–195, DOI: 10.1007/978-3-319-16766-4_20.10.1007/978-3-319-16766-4_20
  6. Castro-Ginard, A., Jordi, C., Luri, X., Julbe, F., Morvan, M., Balaguer-Núñez, L. and Cantat-Gaudin, T. (2018). A new method for unveiling open clusters in Gaia: New nearby open clusters confirmed by DR2, Astronomy and Astrophysics618: A59.10.1051/0004-6361/201833390
  7. Chung, Y.-Y., Tirthapura, S. and Woodruff, D.P. (2016). A simple message-optimal algorithm for random sampling from a distributed stream, IEEE Transactions on Knowledge and Data Engineering28(6): 1356–1368, DOI: 10.1109/TKDE.2016.2518679.10.1109/TKDE.2016.2518679
  8. Czarnowski, I. and Jedrzejowicz, P. (2017). Learning from examples with data reduction and stacked generalization, Journal of Intelligent & Fuzzy Systems32(2): 1401–1411.10.3233/JIFS-169137
  9. Dutta, H., Giannella, C., Borne, K. and Kargupta, H. (2005). Distributed top-K outlier detection from astronomy catalogs using the DEMAC system, 2007 SIAM International Conference on Data Minning, Minneapolis, MN, USA, pp. 473–478, DOI: abs/10.1137/1.9781611972771.47.10.1137/1.9781611972771.47
  10. Eastman, C. and Weiss, S. (1982). Tree structures for high dimensionality nearest neighbor searching, Information Systems7(2): 115–122.10.1016/0306-4379(82)90023-0
  11. Freudling, W. and Romaniello, M. (2016). Delivering data reduction pipelines to science users, SPIE Proceedings9910: 99101U, DOI: 10.1117/12.2232734.10.1117/12.2232734
  12. Freudling, W. Romaniello, M., Bramich, D.M., Ballester, P., Forchi, V., Garcia-Dablo, C.E., Moehler, S. and Neeser, M.J. (2013). Automated data reduction workflows for astronomy. The ESO Reflex environment, Astronomy and Astrophysics559: A96, DOI: 10.1051/0004-6361/201322494.10.1051/0004-6361/201322494
  13. GAIA (2018), GAIA Mission, https://www.cosmos.esa.int/gaia.
  14. Grandinetti, L., Joubert, G., Kunze, M. and Pascucci, V. (2015). Big Data and High Performance Computing, Advances in Parallel Computing, IOS Press, Amsterdam.
  15. Hassan, A. and Fluke, C.J. (2011). Scientific visualization in astronomy: Towards the petascale astronomy era, Publications of the Astronomical Society of Australia28(2): 150–170.10.1071/AS10031
  16. Huang, D. and Chow, T.W.S. (2006). Enhancing density-based data reduction using entropy, Neural Computation18(2): 470–495, DOI: 10.1162/089976606775093927.10.1162/08997660677509392716378523
  17. Kulczycki, P. (2008). Kernel estimators in industrial applications, in B. Prasad (Ed.), Soft Computing Applications in Industry, Springer, Berlin/Heidelberg, pp. 69–91, DOI: org/10.1007/978-3-540-77465-5_4.10.1007/978-3-540-77465-5_4
  18. Li, L., Zhang, Y. and Zhao, Y. (2008). k-Nearest neighbors for automated classification of celestial objects, Science in China G: Physics, Mechanics and Astronomy51(7): 916–922, DOI: 10.1007/s11433-008-0088-4.10.1007/s11433-008-0088-4
  19. Łukasik, S., Lalik, K., Sarna, P., Kowalski, P.A., Charytanowicz, M. and Kulczycki, P. (2019). Efficient astronomical data condensation using fast nearest neighbor search, in P. Kulczycki et al. (Eds), Information Technology, Systems Research and Computational Physics, Advances in Intelligent Systems and Computing, Vol. 945, Springer, Berlin/Heidelberg, pp. 107–115.10.1007/978-3-030-18058-4_9
  20. Łukasik, S., Moitinho, A., Kowalski, P.A., Falcão, A., Ribeiro, R.A. and Kulczycki, P. (2016). Survey of object-based data reduction techniques in observational astronomy, Open Physics14(1): 64, DOI: 10.1515/phys-2016-0064.10.1515/phys-2016-0064
  21. MPI Forum (2015). MPI: A Message-passing Interface Standard: Version 3.1, High-Performance Computing Center, Stuttgart, https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.
  22. Mitra, P., Murthy, C. and Pal, S.K. (2002). Density-based multiscale data condensation, IEEE Transactions on Pattern Analysis and Machine Intelligence24(6): 734–747, DOI: 10.1109/TPAMI.2002.1008381.10.1109/TPAMI.2002.1008381
  23. Muja, M. and Lowe, D.G. (2014). Scalable nearest neighbor algorithms for high dimensional data, IEEE Transactions on Pattern Analysis & Machine Intelligence36(11): 2227–2240, DOI: 10.1109/TPAMI.2014.2321376.10.1109/TPAMI.2014.232137626353063
  24. Olvera-López, J., Ariel Carrasco-Ochoa, J., Martnez-Trinidad, J.F. and Kittler, J. (2010). A review of instance selection methods, Artificial Intelligence Review34(2): 133–143.10.1007/s10462-010-9165-y
  25. OpenMP Architecture Review Boards (2015). OpenMP 4.5 Complete Specifications, https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.
  26. Rocke, D.M. and Dai, J. (2003). Sampling and subsampling for cluster analysis in data mining: With applications to sky survey data, Data Mining and Knowledge Discovery7(2): 215–232, DOI: 10.1023/A:1022497517599.10.1023/A:1022497517599
  27. Ros, F. and Guillaume, S. (2017). DIDES: A fast and effective sampling for clustering algorithm, Knowledge and Information Systems50(2): 543–568, DOI: 10.1007/s10115-016-0946-8.10.1007/s10115-016-0946-8
  28. Schirmer, M. (2013). THELI: Convenient reduction of optical, near-infrared, and mid-infrared imaging data, The Astrophysical Journal Supplement Series209(2): 21, DOI: 10.1088/0067-0049/209/2/21.10.1088/0067-0049/209/2/21
  29. Szalay, A. and Gray, J. (2001). The world-wide telescope, Science293(5537): 2037–2040.10.1126/science.293.5537.203711557879
  30. Wang, D., Shi, L. and Cao, J. (2013). Fast algorithm for approximate k-nearest neighbor graph construction, 2013 IEEE 13th International Conference on Data Mining Workshops, Dallas, TX, USA, pp. 349–356, DOI: 10.1109/ICDMW.2013.50.10.1109/ICDMW.2013.50
  31. Wang, X., Tino, P., Fardal, M.A., Raychaudhury, S. and Babul, A. (2009). Fast Parzen window density estimator, 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, pp. 3267–3274, DOI: 10.1109/IJCNN.2009.5178637.10.1109/IJCNN.2009.5178637
  32. Yianilos, P.N. (1993). Data structures and algorithms for nearest neighbor search in general metric spaces, Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’93, Austin, TX, USA, Vol. 93, pp. 311–321.
  33. Zhang, Y., Chung, F. and Wang, S. (2018). Fast reduced set-based exemplar finding and cluster assignment, IEEE Transactions on Systems, Man, and Cybernetics: Systems49(5): 1–15.10.1109/TSMC.2017.2689789
  34. Zhang, Y.-M., Huang, K., Geng, G. and Liu, C.-L. (2013). Fast kNN graph construction with locality sensitive hashing, in H. Blockeel et al. (Eds), Machine Learning and Knowledge Discovery in Databases, Springer, Berlin/Heidelberg, pp. 660–674, DOI: 10.1007/978-3-642-40991-2_42.10.1007/978-3-642-40991-2_42
DOI: https://doi.org/10.2478/amcs-2019-0034 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 467 - 476
Submitted on: Nov 11, 2018
Accepted on: Mar 18, 2019
Published on: Sep 28, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Szymon Łukasik, Konrad Lalik, Piotr Sarna, Piotr A. Kowalski, Małgorzata Charytanowicz, Piotr Kulczycki, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.