Have a personal or library account? Click to login
Almost Periodic Synchronization of Fuzzy Cellular Neural Networks with Time–Varying Delays via State–Feedback and Impulsive Control Cover

Almost Periodic Synchronization of Fuzzy Cellular Neural Networks with Time–Varying Delays via State–Feedback and Impulsive Control

Open Access
|Jul 2019

References

  1. Abdurahman, A., Jiang, H. and Teng, Z. (2016). Finite-time synchronization for fuzzy cellular neural networks with time-varying delays, Fuzzy Sets and Systems297: 96–111.10.1016/j.fss.2015.07.009
  2. Aouiti, C., Gharbia, I.B., Cao, J., M’Hamdi, M.S. and Alsaedi, A. (2018). Existence and global exponential stability of pseudo almost periodic solution for neutral delay BAM neural networks with time-varying delay in leakage terms, Chaos Solitons & Fractals107: 111–127.10.1016/j.chaos.2017.12.022
  3. Aouiti, C., M’Hamdi, M.S., Cao, J. and Alsaedi, A. (2017). Piecewise pseudo almost periodic solution for impulsive generalised high-order Hopfield neural networks with leakage delays, Neural Processing Letters45(2): 615–648.10.1007/s11063-016-9546-6
  4. Arik, S. (2002a). An analysis of global asymptotic stability of delayed cellular neural networks, IEEE Transactions on Neural Networks13(5): 1239–1242.10.1109/TNN.2002.1031957
  5. Arik, S. (2002b). An improved global stability result for delayed cellular neural networks, IEEE Transactions on Circuits & Systems I: Fundamental Theory & Applications49(8): 1211–1214.10.1109/TCSI.2002.801264
  6. Cai, Z., Huang, L., Guo, Z., Zhang, L. and Wan, X. (2015). Periodic synchronization control of discontinuous delayed networks by using extended Filippov-framework, Neural Networks68: 96–110.10.1016/j.neunet.2015.04.011
  7. Cao, J., Ho, D.W.C. and Yang, Y. (2009). Projective synchronization of a class of delayed chaotic systems via impulsive control, Physics Letters A373(35): 3128–3133.10.1016/j.physleta.2009.06.056
  8. Cao, J., Li, H. and Ho, D.W.C. (2005). Synchronization criteria of Lur‘e systems with time-delay feedback control, Chaos Solitons & Fractals23(4): 1285–1498.10.1016/S0960-0779(04)00380-7
  9. Cao, J. and Liang, J. (2004). Boundedness and stability for Cohen–Grossberg neural network with time-varying delays, Journal of Mathematical Analysis and Applications296(2): 665–685.10.1016/j.jmaa.2004.04.039
  10. Diagana, T. (2013). Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, Cham.10.1007/978-3-319-00849-3
  11. Ding, W. and Han, M. (2008). Synchronization of delayed fuzzy cellular neural networks based on adaptive control, Physics Letters A372(26): 4674–4681.10.1016/j.physleta.2008.04.053
  12. Ding, W., Han, M. and Li, M. (2009). Exponential lag synchronization of delayed fuzzy cellular neural networks with impulses, Physics Letters A373(8–9): 832–837.10.1016/j.physleta.2008.12.049
  13. Feng, X., Zhang, F. and Wang, W. (2011). Global exponential synchronization of delayed fuzzy cellular neural networks with impulsive effects, Chaos Solitons & Fractals44(1): 9–16.10.1016/j.chaos.2010.10.003
  14. Fink, A.M. (1974). Almost Periodic Differential Equations, Springer, Berlin.10.1007/BFb0070324
  15. Guan, K. (2018). Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control, Neurocomputing283: 256–265.10.1016/j.neucom.2018.01.027
  16. Heagy, J.F., Carroll, T.L. and Pecora, L.M. (1994). Experimental and numerical evidence for riddled basins in coupled chaotic systems, Physical Review Letters73(26): 3528–3531.10.1103/PhysRevLett.73.352810057406
  17. Hong, H. (2014). Periodic synchronization and chimera in conformist and contrarian oscillators, Physical Review E89(6): 1–37.10.1103/PhysRevE.89.06292425019868
  18. Hu, C., Yu, J., Jiang, H. and Teng, Z. (2010). Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control, Nonlinearity23(10): 2369–2391.10.1088/0951-7715/23/10/002
  19. Huang, Z. (2017a). Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays, International Journal of Machine Learning and Cybernetics28(4): 1–9.10.1007/s13042-016-0507-1
  20. Huang, Z. (2017b). Almost periodic solutions for fuzzy cellular neural networks with time-varying delays, Neural Computing and Applications28(8): 2313–2320.10.1007/s00521-016-2194-y
  21. Li, Y., Chen, X. and Zhao, L. (2009). Stability and existence of periodic solutions to delayed Cohen–Grossberg BAM neural networks with impulses on time scales, Neurocomputing72(7–9): 1621–1630.10.1016/j.neucom.2008.08.010
  22. Li, Y. and Fan, X. (2009). Existence and globally exponential stability of almost periodic solution for Cohen–Grossberg BAM neural networks with variable coefficients, Applied Mathematical Modelling33(4): 2114–2120.10.1016/j.apm.2008.05.013
  23. Li, Y., Li, B., Yao, S. and Xiong, L. (2018a). The global exponential pseudo almost periodic synchronization of quaternion-valued cellular neural networks with time-varying delays, Neurocomputing303: 75–87.10.1016/j.neucom.2018.04.044
  24. Li, Y., Meng, X. and Ye, Y. (2018b). Almost periodic synchronization for quaternion-valued neural networks with time-varying delays, Complexity2018, Article ID: 6504590.10.1155/2018/6504590
  25. Li, Y., Wang, H. and Meng, X. (2018c). Almost automorphic synchronization of quaternion-valued high-order Hopfield neural networks with time-varying and distributed delays, IMA Journal of Mathematical Control and Information: dny015, DOI:10.1093/imamci/dny015.10.1093/imamci/dny015
  26. Li, Y. and Wang, C. (2013). Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses, Fuzzy Sets and Systems217: 62–79.10.1016/j.fss.2012.11.009
  27. Li, Y. and Zhang, T. (2009). Global exponential stability of fuzzy interval delayed neural networks with impulses on time scales, International Journal of Neural Systems19(06): 449–456.10.1142/S012906570900214220039467
  28. Lin, Y. and Zhang, Y. (2018). Synchronization of stochastic impulsive discrete-time delayed networks via pinning control, Neurocomputing286: 31–40.10.1016/j.neucom.2018.01.052
  29. Long, S. and Xu, D. (2011). Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays, Neuro-computing69(14–15): 2385–2391.10.1016/j.neucom.2011.03.017
  30. Lu, J., Ho, D.W.C., Cao, J. and Kurths, J. (2013). Single impulsive controller for globally exponential synchronization of dynamical networks, Nonlinear Analysis: Real World Applications14(1): 581–593.10.1016/j.nonrwa.2012.07.018
  31. Lu, X., Zhang, X. and Liu, Q. (2018). Finite-time synchronization of nonlinear complex dynamical networks on time scales via pinning impulsive control, Neurocomputing275: 2104–110.10.1016/j.neucom.2017.10.033
  32. Pan, L. and Cao, J. (2011). Anti-periodic solution for delayed cellular neural networks with impulsive effects, Nonlinear Analysis: Real World Applications12(6): 3014–3027.10.1016/j.nonrwa.2011.05.002
  33. Park, J.H. (2009). Synchronization of cellular neural networks of neutral type via dynamic feedback controller, Chaos Solitons & Fractals42(3): 1299–1304.10.1016/j.chaos.2009.03.024
  34. Pecora, L.M. and Carroll, T.L. (1990). Synchronization in chaotic systems, Physical Review Letters64(8): 821–824.10.1103/PhysRevLett.64.82110042089
  35. Sen, M.D.L. (2006). Stability of impulsive time-varying systems and compactness of the operators mapping the input space into the state and output spaces, Journal of Mathematical Analysis and Applications321(2): 621–650.10.1016/j.jmaa.2005.08.038
  36. Stamov, G.T. (2012). Almost Periodic Solutions for Impulsive Differential Equations, Springer, Berlin.10.1007/978-3-642-27546-3
  37. Tang, Z., Park, J.H. and Feng, J. (2018a). Impulsive effects on quasi-synchronization of neural networks with parameter mismatches and time-varying delay, IEEE Transactions on Neural Networks and Learning Systems29(4): 908–919.10.1109/TNNLS.2017.265102428141535
  38. Tang, Z., Park, J.H., Wang, Y. and Feng, J. (2018b). Distributed impulsive quasi-synchronization of Lur’e networks with proportional delay, IEEE Transactions on Cybernetics, 49(8): 3105–3115, DOI:10.1109/TCYB.2018.2839178.10.1109/TCYB.2018.283917829994241
  39. Wang, W. (2018). Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays, Fuzzy Sets and Systems338: 40–49.10.1016/j.fss.2017.04.005
  40. Wu, H., Li, R., Zhang, X. and Yao, R. (2015). Adaptive finite-time complete periodic synchronization of memristive neural networks with time delays, Neural Processing Letters42(3): 563–583.10.1007/s11063-014-9373-6
  41. Xia, Y., Cao, J. and Cheng, S.S. (2007). Global exponential stability of delayed cellular neural networks with impulses, Neurocomputing70(13–15): 2495–2501.10.1016/j.neucom.2006.08.005
  42. Xu, D. and Yang, Z. (2005). Impulsive delay differential inequality and stability of neural networks, Journal of Mathematical Analysis and Applications305(1): 107–120.10.1016/j.jmaa.2004.10.040
  43. Yang, H., Wang, X., Zhong, S. and Shu, L. (2018). Synchronization of nonlinear complex dynamical systems via delayed impulsive distributed control, Applied Mathematics and Computation320: 75–85.10.1016/j.amc.2017.09.019
  44. Yang, T. (2001). Impulsive Control Theory, Springer, Berlin.
  45. Yang, T. and Yang, L.B. (1996). The global stability of fuzzy cellular neural network, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications43(10): 880–883.10.1109/81.538999
  46. Yang, W., Yu, W., Cao, J., Alsaadi, F.E. and Hayat, T. (2017). Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen–Grossberg BAM neural networks with impulses, Neural Networks98: 122–153.10.1016/j.neunet.2017.11.00129227961
  47. Yang, X., Cao, J. and Ho, D. W.C. (2015). Exponential synchronization of discontinuous neural networks with time-varying mixed delays via state feedback and impulsive control, Cognitive Neurodynamics9(2): 113–128.10.1007/s11571-014-9307-z437866725834647
  48. Yuan, K., Cao, J. and Deng, J. (2006). Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays, Neurocomputing69(13–15): 1619–1627.10.1016/j.neucom.2005.05.011
  49. Yuan, K., Fei, S. and Cao, J. (2014). Partial synchronization of the distributed parameter system with time delay via fuzzy control, IMA Journal of Mathematical Control and Information31(1): 51–72.10.1093/imamci/dnt001
  50. Zhang, B., Deng, F., Xie, S. and Luo, S. (2018). Exponential synchronization of stochastic time-delayed memristor-based neural networks via distributed impulsive control, Neurocomputing286: 41–50.10.1016/j.neucom.2018.01.051
DOI: https://doi.org/10.2478/amcs-2019-0025 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 337 - 349
Submitted on: Jun 14, 2018
Accepted on: Feb 22, 2019
Published on: Jul 4, 2019
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Yongkun Li, Huimei Wang, Xiaofang Meng, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.